
Combining WISHBONE
interface signals

Application note

Author: Richard Herveille
Rherveille@OpenCores.org

Rev. 0.2
April 18, 2001

OpenCores Specifications Template 04/18/01

www.opencores.org Rev 0.2 Preliminary i

Revision History

Rev. Date Author Description
0.1 17/04/01 Richard

Herveille
First Draft

0.2 18/04/01 Richard
Herveille

Changed section 2.2
Added VHDL code and timing diagrams

OpenCores Specifications Template 04/18/01

www.opencores.org Rev 0.2 Preliminary 1 of 4

1. Introduction
The WISHBONE System-on-Chip interconnect defines two types of interfaces, called
MASTER and SLAVE. MASTER interfaces are cores that are capable of generating bus
cycles, SLAVE interfaces are cores that are capable of receiving bus cycles. Connections
between the MASTER and SLAVE interfaces can be established in a number of ways,
from as simple as a point-to-point connection to as complex as traffic matrices with bus
arbitration. But how complex or simple the interconnect may be, there is always a
MASTER transferring data to/from a SLAVE.

There are situations where data has to be exchanged between cores that are both
MASTER and SLAVE interfaces as shown in the figure below. In this case the
theoretical bandwidth is double the amount of the figure above, at the expense of
increased complexity caused by the additional interfaces and interconnect-signals.

In large designs these additional interconnect signals could cause routing problems. If the
increased bandwidth is not needed than a substantial reduction in the number of
interconnect signals can be achieved by combining common signals between MASTER
and SLAVE interfaces.

MASTER
interface

SLAVE
interface

Interconnect

MASTER
interface

SLAVE
interface

Interconnect MASTER
interface

SLAVE
interface

OpenCores Specifications Template 04/18/01

www.opencores.org Rev 0.2 Preliminary 2 of 4

2. Combinable signals
All WISHBONE signals can be combined between the MASTER and SLAVE interfaces,
each at its own expense. The WISHBONE signals can be divided into three groups,
common signals, data signals, and bus cycle signals.

1) Common signals:
• CLK_I
• RST_I
• TAG_I/O

2) Data signals
• DAT_I/O

3) Bus Cycle signals
• ACK_I/O
• ADR_I/O
• CYC_I/O
• ERR_I/O
• SEL_I/O
• RTY_I/O
• STB_I/O
• WE_I/O

2.1 Common Signals
Combining the first group is obvious, since they are common to both MASTER and
SLAVE interfaces, no additional logic is required.

2.2 Data signals
Combining the data signals decreases the number of interconnect signals substantially. In
case of a 32bit data bus it requires 64 signals less. The [DAT_I] signal array of the
MASTER and SLAVE interfaces can be combined without any additional logic, because
both are inputs there is not driver issue to resolve. The [DAT_O] signal array of the
MASTER and SLAVE interfaces can be combined at the expense of little additional
logic; either a bus-multiplexor or internal tri-state buffers. The multiplexor or tri-state
buffers are controlled by a statemachine that checks both MASTER interfaces’ [CYC_O]
signals. When a MASTER asserts (‘1’) its [CYC_O] signal, its MASTER [DAT_O]
signal array should drive the bus, whereas the other core should drive the bus with its
SLAVE [DAT_O] signals array. When both MASTER interfaces assert their [CYC_O]
signal one should be selected as a MASTER, whereas the other should be selected as a
SLAVE. How this selection is made is system dependent. Many solutions are possible,
for example selection by priority or a round-robin scheme.

OpenCores Specifications Template 04/18/01

www.opencores.org Rev 0.2 Preliminary 3 of 4

The figure above shows how to connect the cores. The Bus Controller controls which
core is selected as a MASTER and which core is selected as a SLAVE interface. The
SLAVE interfaces’ [CYC_I] signals control the multiplexors states. When the [CYC_I]
signals is asserted (‘1’), the core is selected as a SLAVE interface and the SLAVE
[DAT_O] signals array should drive the bus. When the [CYC_I] signal is negated (‘0’)
the core is selected as a MASTER and the MASTER [DAT_O] signals array may drive
the bus.

Listed below is the code for a simple priority based bus controlled, including the bus
multiplexors.

library ieee;
use ieee.std_logic_1164.all;

entity bus_controller is
port(

CLK_I : in std_logic; -- WISHBONE clock input

CYC_Ia : in std_logic; -- core A MASTER CYC_O output
CYC_Oa : buffer std_logic; -- core A SLAVE CYC_I input
MDAT_Oa : in std_logic_vector(31 downto 0); -- core A MASTER DAT_O array
SDAT_Oa : in std_logic_vector(31 downto 0); -- core A SLAVE DAT_O array
DAT_Oa : out std_logic_vector(31 downto 0); -- core A combined DAT_O array

CYC_Ib : in std_logic; -- core B MASTER CYC_O output
CYC_Ob : buffer std_logic; -- core B SLAVE CYC_I input
MDAT_Ob : in std_logic_vector(31 downto 0); -- core B MASTER DAT_O array
SDAT_Ob : in std_logic_vector(31 downto 0); -- core B SLAVE DAT_O array
DAT_Ob : out std_logic_vector(31 downto 0); -- core B combined DAT_O array

);
end entity bus_controller;

architecture dataflow of bus_controller is
begin

-- generate CYC_O signals
gen_cyco: process(CLK_I)
begin

if (CLK_I’event and CLK_I = ‘1’) then
CYC_Oa <= CYC_Ib and (not CYC_Ia or CYC_Oa);
CYC_Ob <= CYC_Ia and not CYC_Oa;

end if;
end process gen_cyco;

0
1

MASTER CYC_O
SLAVE CYC_I

MASTER DAT_O
SLAVE DAT_O

MASTER DAT_I
SLAVE DAT_I

Bus controller

CYC_Ia CYC_Ib
CYC_Oa CYC_Ob

0
1

MASTER CYC_O
SLAVE CYC_I

MASTER DAT_O
SLAVE DAT_O

MASTER DAT_I
SLAVE DAT_I

OpenCores Specifications Template 04/18/01

www.opencores.org Rev 0.2 Preliminary 4 of 4

-- assign combined DAT_O signals
DAT_Oa <= SDAT_Oa when (CYC_Oa = ‘1’) else MDAT_Oa;
DAT_Ob <= SDAT_Ob when (CYC_Ob = ‘1’) else MDAT_Ob;

end architecture dataflow;

The figure below shows some timing diagrams displaying the MASTER/SLAVE
selection of the cores. Note that when both MASTER interfaces assert (‘1’) their
[CYC_O] signal at the same time, coreB is selected as the SLAVE interface ([CYC_Ob]
is asserted), i.e. coreA has the highest priority. The SLAVE interface remains selected
until the MASTER interface negates (‘0’) its [CYC_O] signal.

2.3 Bus Cycle signals
By inserting tri-state buffers almost all bus cycle signals can be combined. But this is
only useful when doing a point-to-point connection, because it would interfere with the
system architecture to much otherwise. In the case of a point-to-point connected the
question should be raised if it is worth the overhead. Perhaps it is better to redesign one
core into a SLAVE only and thus automatically reduce the amount of required
interconnect signals.

3 Conclusion
WISHBONE signals on modules implementing both MASTER and SLAVE interfaces
can be combined to reduce the amount of required interconnect signals. The [CLK_I],
[RST_I] and [TAG_I/O] signals can be combined without any additional logic. The
[DAT_I] and [DAT_O] signal arrays can be shared between the MASTER and SLAVE
interfaces. Sharing the [DAT_I] signal array costs no additional logic, sharing the
[DAT_O] signals array costs only minor additional logic. Thus providing an easy, low
cost solution to possible routing problems. Other signals could also be shared, but either
the impact on the system architecture is to big or it is worth considering to redesign cores
into SLAVE only modules.

CLK_I

CYC_Ia

CYC_Ib

CYC_Oa

CYC_Ob

