Howto: Porting the GNU Debugger

Practical Experience with the
OpenRISC 1000 Architecture

Jeremy Bennett
Embecosm

Application Note 3. Issue 2
Published November 2008

http://www.embecosm.com

ECOSM

Legal Notice

This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales
License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

This license means you are free:
. to copy, distribute, display, and perform the work

. to make derivative works

under the following conditions:
. Attribution. You must give the original author, Jeremy Bennett of Embecosm
(www.embecosm.com), credit;

. For any reuse or distribution, you must make clear to others the license terms of this
work;
. Any of these conditions can be waived if you get permission from the copyright holder,

Embecosm; and
. Nothing in this license impairs or restricts the author's moral rights.

The software for GNU Debugger, including the code to support the OpenRISC 1000 written by
Embecosm and used in this document is licensed under the GNU General Public License (GNU
General Public License). For detailed licensing information see the files COPYING, COPYING3,
COPYING.LIB and COPYING3.LIB in the source code.

Embecosm is the business name of Embecosm Limited, a private limited company registered
in England and Wales. Registration number 6577021.

ii Copyright © 2008 Embecosm Limited

http://creativecommons.org/licenses/by/2.0/uk/
http://www.embecosm.com
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

ECOSM

Table of Contents

B Go ko Te A6 (et o3 s NPT P PP PPRPI 1
1.1, RAIONALE oeeniiiiiiiiii e ettt aeeaee 1
1.2, Target AUAIEIICE ..oeuiiiiiiiiiiiii ettt ettt et et e e e et e e e eneans 1
1.3. Further Sources of INformationc..coveiiiiiiiiiiiiiiiii e 1

1.3.1. Written Documentationccooviiiiiiiiiiiiiiiiiiiiii 1
1.3.2. Other Information Channelsc..cooeiiiiiiiiiiiiiiii e, 2
1.4. ADOUL EMDECOSITL .oiiiiiiiiiiiiii ittt ettt e e e eaes 2

2. Overview of GDB INternalsc.oouiiiiiiiiiii et e e 3
2.1. GDB NOMENCIATUTE c.uiiiiiiiiiiinitiieie ettt ettt e e e et en e enenneans 3
2.2. Main Functional Areas and Data Structuresc..coocoviiiiiiiiiiniiiiiiienenennenneen. 3

2.2.1. Binary File Description (BFD) ...cociiiiiiiiiii e 3
2.2.2. Architecture DesSCriptionoeeveeiiiiiiiiiiiiii e 4
2.2.3. Target OPeTatiOns ...c.oeeieuiiii ittt et e e et e e et eaennees S
2.2.4. Adding Commands to GDBccciiiiiiiiiii e)
2.3. GDB Architecture Specificationcooiiiiiiiiiiiiiii e S
2.3.1. Looking up an Existing Architecturecccoiiiiiiiiiiiiiiiiiiiiiiiinenennee, 6
2.3.2. Creating a New ArchiteCtureooooiiiiiiiiiiiiiiii e 7
2.3.3. Specifying the Hardware Data Representationcc.coveoveviiiiiininiannen. 8
2.3.4. Specifying the Hardware Architecture and ABIc.cccoiiiiiiiiiniininennen 8
2.3.5. Specifying the Register Architectureccocoiiiiiiiiiiiiiiiiiiiiiiereeenes 9
2.3.6. Specifying Frame Handlingcccooveiiiiiiiiiiiiii e 11
2.4, Target OPETratiOns .o..ceiiiiii it ettt et et et e e e e e e enens 17
2.4.1. Target STrata .o.ceiiiii e 17
2.4.2. Specifying a New Targetccccoveuiiiiiiiiiiiii e 17
2.4.3. struct target_ops Functions and Variables Providing Information 18
2.4.4. struct target_ops Functions Controlling the Target Connection 19
2.4.5. struct target_ops Functions to Access Memory and Registers 19
2.4.6. struct target_ops Functions to Handle Breakpoints and Watchpoints..... 19
2.4.7. struct target_ops Functions to Control Executionccccoeevevviniennennee. 20
2.5. Adding Commands to0 GDBiiiiiiiii e 20
2.0, SIMULATOTIS ouiiiiiiiitit ettt ettt e ens 21
2.7. Remote Serial Protocol (RSP) ...c.oouiiiiiiiiiiii e 22
2.7.1. RSP Client Implementationc.ccovoviiiiiiiiiiiiii e 22
2.7.2. RSP Server Implementationcc.ccovevveiiiiiiiiiiiiiii e 22
2.8. GDB File OrganizZatiOnc.cc.veeieuiiiiii ittt et et e en e e eaeanes 22
2.9. Testing GDB ...oiiiiiiii e e ane 23
2.10. DocUmMENtAtION ...oviiuiiiniiiiii e 23
2.11. Example Procedure Flows in GDBc.ccciiiiiiiiiiiiiiii e 23
2.11.1. Initial Start UpP .ooueeiiiiiii et 24
2.11.2. The GDB target Commandccooeuiiiiiiiiiiiiiiiiiiiee e 24
2.11.3. The GDB load Commandc..coeeuveuiiiiiiiiiiiiiieeee e eieeneen 25
2.11.4. The GDB break Commandccceuveuiiiiiiiiiiiiiiieieire e eeeneeeeneenees 25
2.11.5. The GDB run Commandceeoveuienieniiiiieieieiei et reneneaeaneanes 26
2.11.6. The GDB backtrace Commandcceeuieiiiiiiiniiiiiiieiiieieeeeeeeeieeneen. 28
2.11.7. The GDB continue Command after a Breakpointcccccoevveienieniennes 29
2.12. Summary: Steps to Port a New Architecture to GDBc..ccoeiiiiiiiiiiiinininns. 30

3. The OpenRISC 1000 ATChit@CtUTEc.iuiiiiiiiii e e 31
3.1. The OpenRISC 1000 JTAG INterfacec.ccoveviiiiiiiiiiiiiiiiiii e 32
3.2. The OpenRISC 1000 Remote JTAG Protocolccceveeiiiiiiiiiiiiiiiiiiniiiiieeeennenn. 33
3.3. Application Binary Interface (ABI)cooiiiiiiiiiiiiiii e 34
3.4. Orlksim: the OpenRISC 1000 Architectural Simulatorc.ccccoooviiiiiiiinan... 35

iii Copyright © 2008 Embecosm Limited

ECOSM

4. Porting the OpenRISC 1000 Archit@Ctureccioviiiiiiiiiiiiii e 36
4.1. BED SpPecCificationoouiiiuiiiiii e 36
4.2. OpenRISC 1000 Architecture Specificationc..ccccoveviiiiiiiiiiiiiiiiiiiiieeenen. 36
4.2.1. Creating struct gdbarchcccoiiiiiiii e 37
4.2.2. OpenRISC 1000 Hardware Data Representationc..coeeeveeieiieiniencnnss 37
4.2.3. Information Functions for the OpenRISC 1000 Architecture 38
4.2.4. OpenRISC 1000 Register Architectureccccovvviiviiiiiiiiiiieiniiniineannen. 39
4.2.5. OpenRISC 1000 Frame Handlingc.ccooceveeiiiiiiiiiiiiieiiiiiie e, 40
4.3. OpenRISC 1000 JTAG Remote Target Specificationcccceevviiiiiiiniiiinennnne. 46
4.3.1. Creating struct target_ops for OpenRISC 1000ccoveviiiiriiiiniininnennne. 47
4.3.2. OpenRISC 1000 Target Functions and Variables Providing Information
... 47
4.3.3. OpenRISC 1000 Target Functions Controlling the Connection 48
4.3.4. OpenRISC 1000 Target Functions to Access Memory and Registers 49
4.3.5. OpenRISC 1000 Target Functions to Handle Breakpoints and Watch-
o1} s L £ TP PP P TP S0
4.3.6. OpenRISC 1000 Target Functions to Control Executionc....c... 51
4.3.7. OpenRISC 1000 Target Functions to Execute Commands 353
4.3.8. The Low Level JTAG Interfacecooeoveeiiiiiiiiiiiiiiiiiiiii e, 353
4.4. The OpenRISC 1000 DisasSembIErc.iiiiuiiiiiiiiiiiiiiiee e eeaenes 54
4.5. OpenRISC 1000 Specific Commands for GDBc.cccciiiiiiiiiiiiiiiiceeeeeane 54
4.5.1. The info spr CommAandcooeiiniiiiniiii e S5
4.5.2. The spr CommAaNnd ...c.euiiuiiniiiit ettt e e e enaeanea 55
ST 1 U a1 o -1 o PP PPN 56
(€ 3 (o T -1 o TP PP TP S7
R T EIICES ooiiiii ittt ettt ettt e aa e 59
|5 1o P T RO PU PPN 60

iv Copyright © 2008 Embecosm Limited

ECOSM

List of Figures

2.1. An example Stack framecoooiiiiiiii e 12
2.2. Sequence diagram for GDB Start UP ..c.ocvieiiiiiiiiiiiiie e 24
2.3. High level sequence diagram for the GDB target commandcccccovevveniiiieininneane. 24
2.4. handle_inferior_event sequence diagram in response to the GDB target command
.. 25
2.5. Sequence diagram for the GDB load commandc..coeeeviiiiiiiiiiiiiiiiniiiieeennen, 25
2.6. Sequence diagram for the GDB break commandc..ccoeiiiiiiiiiiiiiiiiiiiniiiinieieenes 26
2.7. High level sequence diagram for the GDB run commandccccceveveniiniiniininneannen. 26
2.8. Sequence diagram for the GDB wait_for_inferior function as used by the run com-

06 F= 1 o Lo E PP PP PP 27
2.9. Sequence diagram for the GDB normal_stop function as used by the run command
.. 27
2.10. High level sequence diagram for the GDB backtrace commandcc.ccceevvennennee. 28
2.11. Sequence diagram for the GDB print_frame function used by the backtrace com-

06 F= 1 o Lo E PP PP PP 28
2.12. High level sequence diagram for the GDB continue command after a breakpoint
.. 29
2.13. Sequence diagram for the GDB handle_inferior_event function after single step-

ping an instruction for the continue commandc.ccooiiiiiiiiiiiiiiiiii e 30
3.1. The OpenRISC 1000 Remote JTAG Protocol data structuresccocveiviviiiiiiininn. 34
4.1. The OpenRISC 1000 stack frame at the end of the prologuecccceiiiiiiiiininn... 41

v Copyright © 2008 Embecosm Limited

ECOSM

Chapter 1. Introduction

This document complements the existing documentation for GDB ([3], [4], [5]). It is intended
to help software engineers porting GDB to a new architecture for the first time.

This application note is based on the author's experience to date. It will be updated in future
issues. Suggestions for improvements are always welcome.

1.1. Rationale

Although the GDB project includes a 100 page guide to its internals, that document is aimed
primarily at those wishing to develop GDB itself. The document also suffers from three limi-
tations.

1. It tends to document at a detailed level. Individual functions are described well, but it
is hard to get the big picture.

2. It is incomplete. Many of the most useful sections (for example on frame interpretation)
are yet to be written.

3. Is tends to be out of date. For example the documentation of the Ul-Independent output
describes a number of functions which no longer exist.

Consequently the engineer faced with their first port of GDB to a new architecture is faced with
discovering how GDB works by reading the source code and looking at how other architectures
have been ported.

The author of this application note went through that process when porting the Open-
RISC 1000 architecture to GDB. This document captures the learning experience, with the
intention of helping others.

1.2. Target Audience
If you are about to start a port of GDB to a new architecture, this document is for you. If at
the end of your endeavors you are better informed, please help by adding to this document.

If you have already been through the porting process, please help others by adding to this
document.

1.3. Further Sources of Information

1.3.1. Written Documentation

The main user guide for GDB [3] provides a great deal of context about how GDB is intended
to work.

The GDB Internals document [4] is essential reading before and during any porting exercise. It
is not complete, nor is it always up to date, but it provides the first place to look for explanation
of what a particular function does.

GDB relies on a separate specification of the Binary file format; for each architecture. That
has its own comprehensive user guide [5].

The main GDB code base is generally well commented, particularly in the headers for the major
interfaces. Inevitably this must be the definitive place to find out exactly how a particular
function behaves.

1 Copyright © 2008 Embecosm Limited

ECOSM

The files making up the port for the OpenRISC 1000 are comprehensively commented, and
can be processed with Doxygen [7]. Each function's behavior, its parameters and any return
value is described.

1.3.2. Other Information Channels

The main GDB website is at sourceware.org/gdb/. It is supplemented by the less formal GDB
Wiki at sourceware.org/gdb/wiki/.

The GDB developer community communicate through the GDB mailing lists and using IRC
chat. These are always good places to find solutions to problems.

The main mailing list for discussion is gdb@sourceware.org, although for detailed understand-
ing, the patches mailing list, gdb-patches@sourceware.org. See the main GDB website for de-
tails of subscribing to these mailing lists.

IRC is channel #gdb on irc.freenode.net.

1.4. About Embecosm

Embecosm is a consultancy specializing in open source tools, models and training for the
embedded software community. All Embecosm products are freely available under open source
licenses.

Embecosm offers a range of commercial services.

. Customization of open source tools and software, including porting to new architectures.
. Support, tutorials and training for open source tools and software.
. Custom software development for the embedded market, including bespoke software

models of hardware.
. Independent evaluation of software tools.

For further information, visit the Embecosm website at www.embecosm.com.

2 Copyright © 2008 Embecosm Limited

http://sourceware.org/gdb/
http://sourceware.org/gdb/wiki/
http://www.embecosm.com/

ECOSM

Chapter 2. Overview of GDB Internals

There are three major areas to GDB:
1. The user interface. How GDB communicates with the user.

2. The symbol side. The analysis of object files, and the mapping of the information con-
tained to the corresponding source files.

3. The target side. Executing programs and analyzing their data.

GDB has a very simple view of a processor. It has a block of memory and a block of registers.
Executing code contains its state in the registers and in memory. GDB maps that information
to the source level program being debugged.

Porting a new architecture to GDB means providing a way to read executable files, a description
of the ABI, a description of the physical architecture and operations to access the target being
debugged.

Probably the most common use of GDB is to debug the architecture on which it is actually
running. This is native debugging where the architecture of the host and target are the same.

For the OpenRISC 1000 GDB is normally run on a host separate to the target (typically a
workstation) connecting to the OpenRISC 1000 target via JTAG, using the OpenRISC 1000
Remote JTAG Protocol. Remote debugging in this way is the most common method of working
for embedded systems.

2.1. GDB Nomenclature

A full Glossary is provided at the end of this document. However a number of key concepts
are worth explaining up front.

. Exec or program. An executable program, i.e. a binary file which may be run indepen-
dently of other programs. Commonly the term program is found in user documentation,
and exec in comments and GDB internal documentation.

. Inferior. A GDB entity representing a program or exec which has run, is running, or will
run in the future. An inferior corresponds to a process or a core dump file.

. Address space. A GDB entity which can interpret addresses (that is values of type
CORE_ADDR). Inferiors must have at least one address space and inferiors may share an
address space.

. Thread. A single thread of control within an inferior.

The OpenRISC 1000 port for GDB is designed for "bare metal" debugging, so will have only a
single address space and inferiors with a single thread.

2.2. Main Functional Areas and Data Structures

2.2.1. Binary File Description (BFD)

BFD is a package which allows applications to use the same routines to operate on object files
whatever the object file format. A new object file format can be supported simply by creating
a new BFD back end and adding it to the library.

3 Copyright © 2008 Embecosm Limited

ECOSM

The BFD library back end creates a number of data structures describing the data held
in a particular type of object file. Ultimately a unique enumerated constant (of type
enum bfd_architecture) is defined for each individual architecture. This constant is then used
to access the various data structures associated with the BFD of the particular architecture.

In the case of the OpenRISC 1000, 32-bit implementation (which may be a COFF or ELF
binary), the enumerated constant is bfd_arch_or32.

BFD is part of the binutils package. A binutils implementation must be provided for any archi-
tecture intending to support the GNU tool chain.

The OpenRISC 1000 is supported by the GNU tool chain. BFD back ends already exist which
are suitable for use with 32-bit OpenRISC 1000 images in ELF or COFF format as used with
either the RTEMS or Linux operating systems.

2.2.2. Architecture Description

Any architecture to be debugged by GDB is described in a struct gdbarch. When an object
file is to be debugged, GDB will select the correct struct gdbarch using information about
the object file captured in its BFD.

The data in struct gdbarch facilitates both the symbol side processing (for which it also uses
the BFD information) and the target side processing (in combination with the frame and target
operation information).

struct gdbarch is a mixture of data values (number of bytes in an integer for example) and
functions to perform standard operations (e.g. to print the registers). The major functional
groups are:

. Data values capturing details of the hardware architecture. For example the endianism
and the number of bits in an address and in a word. Some of this data is captured in
the BFD, to which there is a reference in the struct gdbarch. There is also a structure,
struct gdbarch_tdep to capture additional target specific data, beyond that which is
covered by the standard struct gdbarch.

. Data values describing how all the standard high level scalar data structures are repre-
sented (char, int, double etc).

. Functions to access and display registers. GDB includes the concept of "pseudo-regis-
ters", those registers which do not physically exist, but which have a meaning within the
architecture. For example in the OpenRISC 1000, floating point registers are actually the
same as the General Purpose Registers. However a set of floating point pseudo-registers
could be defined, to allow the GPRs to be displayed in floating point format.

. Functions to access information on stack frames. This includes setting up "dummy"
frames to allow GDB to evaluate functions (for example using the call command).

An architecture will need to specify most of the contents of struct gdbarch, for which a set
of functions (all starting set_gdbarch_) are provided. Defaults are provided for all entries, and
in a small number of cases these will be suitable.

Analysis of the stack frames of executing programs is complex with different approaches need-
ed for different circumstances. A set of functions to identify stack frames and analyze their
contents is associated with each struct gdbarch.

4 Copyright © 2008 Embecosm Limited

ECOSM

A set of utility functions are provided to access the members of struct gdbarch. Element xyz
of a struct gdbarch pointed to by g may be accessed by using gdbarch_xyz (g, ...). This
will check, using gdb_assert that g is defined, and in the case of functions that g->x is not
NULL and return either the value g->xyz (for values) or the result of calling g->xyz (...) (for
functions). This saves the user testing for existence before each function call, and ensures any
errors are handled cleanly.

2.2.3. Target Operations

A set of operations is required to access a program using the target architecture described by
struct gdbarch in order to implement the target side functionality. For any given architecture
there may be multiple ways of connecting to the target, specified using the GDB target com-
mand. For example with the OpenRISC 1000 architecture, the connection may be directly to
a JTAG interface connected through the host computer's parallel port, or through the Open-
RISC 1000 Remote JTAG Protocol over TCP/IP.

These target operations are described in a struct target_ops. As with struct gdbarch this
comprises a mixture of data and functions. The major functional groups are:

. Functions to establish and close down a connection to the target.

. Functions to access registers and memory on the target.

. Functions to insert and remote breakpoints and watchpoints on the target.

. Functions to start and stop programs running on the target.

. A set of data describing the features of the target, and hence what operations can be

applied. For example when examining a core dump, the data can be inspected, but the
program cannot be executed.

As with struct gdbarch, defaults are provided for the struct target_ops values. In many
cases these are sufficient, so need not be provided.

2.2.4. Adding Commands to GDB

GDB's command handling is intended to be extensible. A set of functions (defined in cli-
decode.h) provide that extensibility.

GDB groups its commands into a number of command lists (of struct cmd_list_element),
pointed to by a number of global variables (defined in cli-cmds.h). Of these, cmdlist is the list
of all defined commands. Separate lists define sub-commands of various top level commands.
For example infolist is the list of all info sub-commands.

Commands are also classified according the the area they address, for example commands
that provide support, commands that examine data, commands for file handling etc. These
classes are specified by enum command_class, defined in command.h. These classes provide the
top level categories in which help will be given.

2.3. GDB Architecture Specification

A GDB description for a new architecture, arch is created by defining a global function
_initialize_arch_tdep, by convention in the source file arch-tdep.c. In the case of the Open-
RISC 1000, this function is called _initialize_orilk_tdep and is found in the file orik-tdep.c.

5 Copyright © 2008 Embecosm Limited

ECOSM

The resulting object files containing the implementation of the _initialize_arch_tdep func-
tion are specified in the GDB configure.tgt file, which includes a large case statement pattern
matching against the --target option of the configure command.

The new struct gdbarch is created within the _initialize_arch_tdep function by calling
gdbarch_register:

void gdbarch_register (enum bfd_architecture architecture,
gdbarch_init_ftype *init_func,
gdbarch_dump_tdep_ftype *tdep_dump_func);

For example the _initialize_orilk_tdep creates its architecture for 32-bit OpenRISC 1000
architectures by calling.

gdbarch_register (bfd_arch_or32, orlik_gdbarch_init, orlk_dump_tdep);

The architecture enumeration will identify the unique BFD for this architecture (see Sec-
tion 2.2.1). The init_func is called to create and return the new struct gdbarch (see Sec-
tion 2.3). The tdep_dump_func is a function which will dump the target specific details associ-
ated with this architecture (also described in Section 2.3).

The call to gdbarch_register (see Section 2.2) specifies a function which will define a
struct gdbarch for a particular BFD architecture.

struct gdbarch gdbarch_init_func (struct gdbarch_info info,
struct gdbarch_list *arches);

For example, in the case of the OpenRISC 1000 architecture, the initialization function is
orlk_gdbarch_init.
6 Tip
By convention all target specific functions and global variables in GDB begin with
= a string unique to that architecture. This helps to avoid namespace pollution when
i using C. Thus all the MIPS specific functions begin mips_, the ARM specific func-
tions begin arm_ etc.

For the OpenRISC 1000 all target specific functions and global variables begin with
orlk_.

2.3.1. Looking up an Existing Architecture

The first argument to the architecture initialization function is a struct gdbarch_info con-
taining all the known information about this architecture (deduced from the BFD enumeration
provided to gdbarch_register). The second argument is a list of the currently defined archi-
tectures within GDB.

The lookup is done using gdbarch_list_lookup_by_info. It is passed the list of existing ar-
chitectures and the struct gdbarch_info (possibly updated) and returns the first matching
architecture it finds, or NULL if none are found. If an architecture is found, the initialization
function can finish, returning the found architecture as result.

6 Copyright © 2008 Embecosm Limited

ECOSM

2.3.1.1. struct gdbarch_info
The struct gdbarch_info has the following components:

struct gdbarch_info

{
const struct bfd_arch_info *bfd_arch_info;
int byte_order;
bfd *abfd;
struct gdbarch_tdep_info *tdep_info;
enum gdb_osabi osabi;
const struct target_desc *target_desc;
};

bfd_arch_info holds the key details about the architecture. byte_order is an enumeration
indicating the endianism. abfd is a pointer to the full BFD, tdep_info is additional custom
target specific information, gdb_osabi is an enumeration identifying which (if any) of a number
of operating specific ABIs are used by this architecture and target_desc is a set of name-value
pairs with information about register usage in this target.

When the struct gdbarch initialization function is called, not all the fields are provided—only
those which can be deduced from the BFD. The struct gdbarch_info is used as a look-up
key with the list of existing architectures (the second argument to the initialization function)
to see if a suitable architecture already exists. The tdep_info osabi and target_desc fields
may be added before this lookup to refine the search.

2.3.2. Creating a New Architecture

If no architecture is found, then a new architecture must be created, by calling gdbarch_alloc
using the supplied struct gdbarch_info and and any additional custom target specific infor-
mation in a struct gdbarch_tdep.

The newly created struct gdbarch must then be populated. Although there are default values,
in most cases they are not what is required. For each element, X, there is a corresponding
accessor function to set the value of that element, set_gdbarch_X.

The following sections identify the main elements that should be set in this way. This is not
the complete list, but represents the functions and elements that must commonly be specified
for a new architecture. Many of the functions are described in the header file, gdbarch.h and
many may be found in the GDB Internals document [4].

2.3.2.1. struct gdbarch_tdep

struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep);

struct gdbarch_tdep is not defined within GDB—it is up to the user to define this struct if it is
needed to hold custom target information that is not covered by the standard struct gdbarch.
For example with the OpenRISC 1000 architecture it is used to hold the number of matchpoints
available in the target (along with other information). If there is no additional target specific
information, it can be set to NULL.

7 Copyright © 2008 Embecosm Limited

ECOSM

2.3.3. Specifying the Hardware Data Representation

A set of values in struct gdbarch define how different data types are represented within the
architecture.

short_bit. Number of bits in a C/C++ short variable. Default is 2*TARGET_CHAR_BIT.
TARGET_CHAR_BIT is a defined constant, which if not set explicitly defaults to 8.

int_bit, long_bit, long_long_bit, float_bit, double_bit, long_double_bit. These are
analogous to short and are the number of bits in a C/C++ variable of the corresponding
time. Defaults are 4*TARGET_CHAR_BIT for int, long and float and 4*TARGET_CHAR_BIT
for long long, double and long double.

ptr_bit. Number of bits in a C/C++ pointer. Default is 4*TARGET_CHAR_BIT.

addr_bit. Number of bits in a C/C++ address. Almost always this is the same as the
number of bits in a pointer, but there are a small number of architectures for which
pointers cannot reach all addresses. Default is 4*TARGET_CHAR_BIT.

float_format, double_format and long_double_format. These point to an array of
C structs (one for each endianism), defining the format for each of the floating point
types. A number of these arrays are predefined. They in turn are built on top of a set of
standard types defined by the library libiberty.

char_signed. 1 if char to be treated as signed, O if char is to be treated as unsigned. The
default is -1 (undefined), so this should always be set.

2.3.4. Specifying the Hardware Architecture and ABI

A set of function members of struct gdbarch define aspects of the architecture and its ABI. For
some of these functions, defaults are provided which will be suitable for most architectures.

return_value. This function determines the return convention for a given data type. For
example on the OpenRISC 1000, structs/unions and large (>32 bit) scalars are returned
as references, while small scalars are returned in GPR 11. This function should always
be defined.

breakpoint_from_pc. Returns the breakpoint instruction to be used when the PC is at a
particular location in memory. For architectures with variable length instructions, the
choice of breakpoint instruction may depend on the length of the instruction at the
program counter. Returns the instruction sequence and its length.

The default value is NULL (undefined). This function should always be defined if GDB is
to support breakpointing for this architecture.

adjust_breakpoint_address. Some architectures do not allow breakpoints to be placed
at all points. Given a program counter, this function returns an address where a break-
point can be placed. Default value is NULL (undefined). The function need only be defined
for architectures which cannot accept a breakpoint at all program counter locations.

memory_insert_breakpoint and memory_remove_breakpoint. These functions in-
sert or remove memory based (a.k.a. soft) breakpoints. The default values
default_memory_insert_breakpoint and default_memory_remove_breakpoint are suit-
able for most architectures, so in most cases these functions need not be defined.

decr_pc_after_break. Some architectures require the program counter to be decrement-
ed after a break, to allow the broken instruction to be executed on resumption. This
function returns the number of bytes by which to decrement the address. The default

Copyright © 2008 Embecosm Limited

ECOSM

value is NULL (undefined) which means the program counter is left unchanged. This
function need only be defined if the functionality is required.

In practice this function is only of use for the very simplest architectures. It applies only
to software breakpoints, not watchpoints or hardware breakpoints. It is more usual to
adjust the program counter as required in the target to_wait and to_resume functions
(see Section 2.4).

. single_step_through_delay. Returns 1 if the target is executing a delay slot and a fur-
ther single step is needed before the instruction finishes. The default value is NULL (not
defined). This function should be implemented if the target has delay slots.

. print_insn. Disassemble an instruction and print it. Default value is NULL (undefined).
This function should be defined if disassembly of code is to be supported.
Disassembly is a function required by the binutils library. This function is defined in
the opcodes sub-directory. A suitable implementation may already exist if binutils has
already been ported.

2.3.5. Specifying the Register Architecture

GDB considers registers to be a set with members numbered linearly from O upwards. The first
part of that set corresponds to real physical registers, the second part to any "pseudo-regis-
ters". Pseudo-registers have no independent physical existence, but are useful representations
of information within the architecture. For example the OpenRISC 1000 architecture has up
to 32 general purpose registers, which are typically represented as 32-bit (or 64-bit) integers.
However it could be convenient to define a set of pseudo-registers, to show the GPRs repre-
sented as floating point registers.

For any architecture, the implementer will decide on a mapping from hardware to GDB register
numbers. The registers corresponding to real hardware are referred to as raw registers, the
remaining registers are pseudo-registers. The total register set (raw and pseudo) is called the
cooked register set.

2.3.5.1. struct gdbarch Functions Specifying the Register Architecture
These functions specify the number and type of registers in the architecture.

. read_pc and write_pc. Functions to read the program counter. The default value is NULL
(no function available). However, if the program counter is just an ordinary register, it
can be specified in struct gdbarch instead (see pc_regnum below) and it will be read or
written using the standard routines to access registers. Thus this function need only be
specified if the program counter is not an ordinary register.

. pseudo_register_read and pseudo_register_write. These functions should be defined
if there are any pseudo-registers (see Section 2.2.2 and Section 2.3.5.3 for more infor-
mation on pseudo-registers). The default value is NULL.

. num_regs and num_pseudo_regs. These define the number of real and pseudo-registers.
They default to -1 (undefined) and should always be explicitly defined.

. sp_regnum, pc_regnum, ps_regnum and fp@_regnum. These specify the register holding the
stack pointer, program counter, processor status and first floating point register. All
except the first floating-point register (which defaults to 0) default to -1 (not defined).
They may be real or pseudo-registers. sp_regnum must always be defined. If pc_regnum
is not defined, then the functions read_pc and write_pc (see above) must be defined. If
ps_regnum is not defined, then the $ps variable will not be available to the GDB user.
fpO_regnum is not needed unless the target offers support for floating point.

9 Copyright © 2008 Embecosm Limited

ECOSM

2.3.5.2. struct gdbarch Functions Giving Register Information

These functions return information about registers.

register_name. This function should convert a register number (raw or pseudo) to a
register name (as a C char *). This is used both to determine the name of a register for
output and to work out the meaning of any register names used as input. For example
with the OpenRISC 1000, GDB registers 0-31 are the General Purpose Registers, register
32 is the program counter and register 33 is the supervision register, which map to the
strings "gpree" through "gpr31", "pc" and "sr" respectively. This means that the GDB
command print $gpr5 should print the value of the OR1K general purpose register 5.
The default value for this function is NULL. It should always be defined.

Historically, GDB always had a concept of a frame pointer register, which could be ac-
cessed via the GDB variable, $fp. That concept is now deprecated, recognizing that not
all architectures have a frame pointer. However if an architecture does have a frame
pointer register, and defines a register or pseudo-register with the name "fp", then that
register will be used as the value of the $fp variable.

register_type. Given a register number, this function identifies the type of data it may
be holding, specified as a struct type. GDB allows creation of arbitrary types, but a
number of built in types are provided (builtin_type_void, builtin_type_int32 etc), to-
gether with functions to derive types from these. Typically the program counter will have
a type of "pointer to function" (it points to code), the frame pointer and stack pointer
will have types of "pointer to void" (they point to data on the stack) and all other integer
registers will have a type of 32-bit integer or 64-bit integer. This information guides the
formatting when displaying out register information. The default value is NULL meaning
no information is available to guide formatting when displaying registers.

print_registers_info. Define this function to print out one or all of the reg-
isters for the GDB info registers command. The default value is the function
default_print_registers_info which uses the type information (see register_type
above) to determine how each register should be printed. Define this function for fuller
control over how the registers are displayed.

print_float_info and print_vector_info. Define this function to provide output for
the GDB info float and info vector commands respectively. The default value is NULL
(not defined), meaning no information will be provided. Define each function if the target
supports floating point or vector operations respectively.

register_reggroup_p. GDB groups registers into different categories (general, vec-
tor, floating point etc). This function given a register and group returns 1 (true)
if the register is in the group and O otherwise. The default value is the function
default_register_reggroup_p which will do a reasonable job based on the type of the
register (see the function register_type above), with groups for general purpose regis-
ters, floating point registers, vector registers and raw (i.e not pseudo) registers.

2.3.5.3. Register Caching

Caching of registers is used, so that the target does not need to be accessed and reana-
lyzed multiple times for each register in circumstances where the register value cannot have
changed.

GDB provides struct regcache, associated with a particular struct gdbarch to hold the cached
values of the raw registers. A set of functions is provided to access both the raw registers (with
raw in their name) and the full set of cooked registers (with cooked in their name). Functions

10

Copyright © 2008 Embecosm Limited

ECOSM

are provided to ensure the register cache is kept synchronized with the values of the actual
registers in the target.

Accessing registers through the struct regcache routines will ensure that the appropriate
struct gdbarch functions are called when necessary to access the underlying target architec-
ture. In general users should use the "cooked" functions, since these will map to the "raw"
functions automatically as appropriate.

The two key functions are regcache_cooked_read and regcache_cooked_write which read
or write a register to or from a byte buffer (type gdb_byte *). For convenience
the wrapper functions regcache_cooked_read_signed, regcache_cooked_read_unsigned,
regcache_cooked_write_signed and regcache_cooked_write_unsigned are provided, which
read or write the value and convert to or from a value as appropriate.

2.3.6. Specifying Frame Handling

GDB needs to understand the stack on which local (automatic) variables are stored. The area
of the stack containing all the local variables for a function invocation is known as the stack
frame for that function (or colloquially just as the "frame"). In turn the function that called
the function will have its stack frame, and so on back through the chain of functions that
have been called.

Almost all architectures have one register dedicated to point to the end of the stack (the stack
pointer). Many have a second register which points to the start of the currently active stack
frame (the frame pointer). The specific arrangements for an architecture are a key part of the
ABI.

A diagram helps to explain this. Here is a simple program to compute factorials:

1: #include <stdio.h>

2:

3: int fact(int n)

4: {

5: if(@ ==n) {

6: return 1;

7: }

8: else {

9: return n * fact(n - 1);
10: }

11: }
12:
13: main()
14: {
15: int 1i;
16:
17: for(i =0 ; 1i<10 ; i++) {
18: int f = fact(i);
19: printf("%d! = %d\n", i, f);
20: }
21: }

Consider the state of the stack when the code reaches line 6 after the main program has called
fact (3). The chain of function calls will be main, fact (3), fact (2), fact (1) and fact (0).

11 Copyright © 2008 Embecosm Limited

ECOSM

In this example the stack is falling (as used by the OpenRISC 1000 ABI). The stack pointer
(SP) is at the end of the stack (lowest address) and the frame pointer (FP) is at the highest
address in the current stack frame. Figure 2.1 shows how the stack looks.

Frame
Number int fact(int n)
i=3 {
£ if(@ == n.) {
#4 main () :) return 1; — PpC
else {
— return n * fact(n - 1);
n=3 } }
#3 fact (3) — main()
;ﬂ
int i;
n=2
for(i =0 ; i< 10 ; i++) {
#2 fact (2) . int £ = fact(i);
—~ printf("%d! = %d\n", i, f);
n=1 }
#1 fact (1)
I E— FP
n=2=0
#0 fact (9)
— t—SP

#-1 — Direction of
m stack growth

Figure 2.1. An example stack frame

In each stack frame, offset O from the stack pointer is the frame pointer of the previous frame
and offset 4 (this is illustrating a 32-bit architecture) from the stack pointer is the return
address. Local variables are indexed from the frame pointer, with negative indexes. In the
function fact, offset -4 from the frame pointer is the argument n. In the main function, offset
-4 from the frame pointer is the local variable i and offset -8 from the frame pointer is the
local variable f.

. Note
\/ This is a simplified example for illustrative purposes only. Good optimizing com-
4
pilers would not put anything on the stack for such simple functions. Indeed they
might eliminate the recursion and use of the stack entirely!

It is very easy to get confused when examining stacks. GDB has terminology it uses rigorously
throughout. The stack frame of the function currently executing, or where execution stopped
is numbered zero. In this example frame #0 is the stack frame of the call to fact (0). The stack
frame of its calling function (fact(1) in this case) is numbered #1 and so on back through
the chain of calls.

The main GDB data structure describing frames is struct frame_info. It is not used directly,
but only via its accessor functions. struct frame_info includes information about the registers
in the frame and a pointer to the code of the function with which the frame is associated. The
entire stack is represented as a linked list of struct frame_info.

2.3.6.1. Frame Handling Terminology
It is easy to get confused when referencing stack frames. GDB uses some precise terminology.

12 Copyright © 2008 Embecosm Limited

ECOSM

. THIS frame is the frame currently under consideration.

. The NEXT frame, also sometimes called the inner or newer frame is the frame of the
function called by the function of THIS frame.

. The PREVIOUS frame, also sometimes called the outer or older frame is the frame of the
function which called the function of THIS frame.

So in the example of Figure 2.1, if THIS frame is #3 (the call to fact (3)), the NEXT frame is
frame #2 (the call to fact (2)) and the PREVIOUS frame is frame #4 (the call to main ()).

The innermost frame is the frame of the current executing function, or where the program
stopped, in this example, in the middle of the call to fact (0)). It is always numbered frame #0.

The base of a frame is the address immediately before the start of the NEXT frame. For a falling
stack this will be the lowest address and for a rising stack this will be the highest address
in the frame.

GDB functions to analyze the stack are typically given a pointer to the NEXT frame to determine
information about THIS frame. Information about THIS frame includes data on where the
registers of the PREVIOUS frame are stored in this stack frame. In this example the frame
pointer of the PREVIOUS frame is stored at offset O from the stack pointer of THIS frame.

The process whereby a function is given a pointer to the NEXT frame to work out information
about THIS frame is referred to as unwinding. The GDB functions involved in this typically
include unwind in their name.

The process of analyzing a target to determine the information that should go in
struct frame_info is called sniffing. The functions that carry this out are called sniffers and
typically include sniffer in their name. More than one sniffer may be required to extract all
the information for a particular frame.

Because so many functions work using the NEXT frame, there is an issue about addressing
the innermost frame—it has no NEXT frame. To solve this GDB creates a dummy frame #-1,
known as the sentinel frame.

2.3.6.2. Prologue Caches

All the frame sniffing functions typically examine the code at the start of the corresponding
function, to determine the state of registers. The ABI will save old values and set new values
of key registers at the start of each function in what is known as the function prologue.

For any particular stack frame this data does not change, so all the standard unwinding
functions, in addition to receiving a pointer to the NEXT frame as their first argument, receive
a pointer to a prologue cache as their second argument. This can be used to store values
associated with a particular frame, for reuse on subsequent calls involving the same frame.

It is up to the user to define the structure used (it is a void * pointer) and arrange allocation
and deallocation of storage. However for general use, GDB provides struct trad_frame_cache,
with a set of accessor routines. This structure holds the stack and code address of THIS frame,
the base address of the frame, a pointer to the struct frame_info for the NEXT frame and
details of where the registers of the PREVIOUS frame may be found in THIS frame.

Typically the first time any sniffer function is called with NEXT frame, the prologue sniffer for
THIS frame will be NULL. The sniffer will analyze the frame, allocate a prologue cache structure
and populate it. Subsequent calls using the same NEXT frame will pass in this prologue cache,
so the data can be returned with no additional analysis.

13 Copyright © 2008 Embecosm Limited

ECOSM

2.3.6.3. struct gdbarch Functions to Analyze Frames

These struct gdbarch functions and value provide analysis of the stack frame and allow it
to be adjusted as required.

skip_prologue. The prologue of a function is the code at the beginning of the function
which sets up the stack frame, saves the return address etc. The code representing the
behavior of the function starts after the prologue.

This function skips past the prologue of a function if the program counter is within
the prologue of a function. With modern optimizing compilers, this may be a far from
trivial exercise. However the required information may be within the binary as DWARF2
debugging information, making the job much easier.

The default value is NULL (not defined). This function should always be provided, but can
take advantage of DWARF2 debugging information, if that is available.

inner_than. Given two frame or stack pointers, return 1 (true) if the first represents the
"inner" stack frame and O (false) otherwise. This is used to determine whether the target
has a rising or a falling stack frame. See Section 2.3.6 for an explanation of "inner"
frames.

The default value of this function is NULL and it should always be defined. However for
almost all architectures one of the built-in functions can be used: core_addr_lessthan
(for falling stacks) or core_addr_greaterthan (for rising stacks).

frame_align. The architecture may have constraints on how its frames are aligned. Giv-
en a proposed address for the stack pointer, this function returns a suitably aligned ad-
dress (by expanding the stack frame). The default value is NULL (undefined). This func-
tion should be defined for any architecture where it is possible the stack could become
misaligned. The utility functions align_down (for falling stacks) and align_up (for rising
stacks) will facilitate the implementation of this function.

frame_red_zone_size. Some ABIs reserve space beyond the end of the stack for use by
leaf functions without prologue or epilogue or by exception handlers (OpenRISC 1000 is
in this category). This is known as a red zone (AMD terminology). The default value is O.
Set this field if the architecture has such a red zone.

2.3.6.4. struct gdbarch Functions to Access Frame Data

These functions provide access to key registers and arguments in the stack frame.

unwind_pc and unwind_sp. These functions are given a pointer to THIS stack frame (see
Section 2.3.6 for how frames are represented) and return the value of the program
counter and stack pointer respectively in the PREVIOUS frame (i.e. the frame of the func-
tion that called this one).

frame_num_args. Given a pointer to THIS stack frame (see Section 2.3.6 for how frames
are represented), return the number of arguments that are being passed, or -1 if not
known. The default value is NULL (undefined), in which case the number of arguments
passed on any stack frame is always unknown. For many architectures this will be a
suitable default.

2.3.6.5. struct gdbarch Functions Creating Dummy Frames

GDB can call functions in the target code (for example by using the call or print commands).
These functions may be breakpointed, and it is essential that if a function does hit a break-
point, commands like backtrace work correctly.

14

Copyright © 2008 Embecosm Limited

ECOSM

This is achieved by making the stack look as though the function had been called from the
point where GDB had previously stopped. This requires that GDB can set up stack frames
appropriate for such function calls.

The following functions provide the functionality to set up such "dummy" stack frames.

. push_dummy_call. This function sets up a dummy stack frame for the function about to
be called. push_dummy_call is given the arguments to be passed and must copy them
into registers or push them on to the stack as appropriate for the ABI. GDB will then
pass control to the target at the address of the function, and it will find the stack and
registers set up just as expected.

The default value of this function is NULL (undefined). If the function is not defined, then
GDB will not allow the user to call functions within the target being debugged.

. unwind_dummy_id. This is the inverse of push_dummy_call which restores the stack and
frame pointers after a call to evaluate a function using a dummy stack frame. The default
value is NULL (undefined). If push_dummy_call is defined, then this function should also
be defined.

. push_dummy_code. If this function is not defined (its default value is NULL), a dummy call
will use the entry point of the target as its return address. A temporary breakpoint will
be set there, so the location must be writable and have room for a breakpoint.

It is possible that this default is not suitable. It might not be writable (in ROM possibly),
or the ABI might require code to be executed on return from a call to unwind the stack
before the breakpoint is encountered.

If either of these is the case, then push_dummy_code should be defined to push an in-
struction sequence onto the end of the stack to which the dummy call should return.

" Note
\\/ This does require that code in the stack can be executed. Some Harvard ar-
chitectures may not allow this.

2.3.6.6. Analyzing Stacks: Frame Sniffers

When a program stops, GDB needs to construct the chain of struct frame_info representing
the state of the stack using appropriate sniffers.

Each architecture requires appropriate sniffers, but they do not form entries in
struct gdbarch, since more than one sniffer may be required and a sniffer may be suitable
for more than one struct gdbarch. Instead sniffers are associated with architectures using
the following functions.

. frame_unwind_append_sniffer is used to add a new sniffer to analyze THIS frame when
given a pointer to the NEXT frame.

. frame_base_append_sniffer is used to add a new sniffer which can determine informa-
tion about the base of a stack frame.

. frame_base_set_default is used to specify the default base sniffer.

These functions all take a reference to struct gdbarch, so they are associated with a specific
architecture. They are usually called in the struct gdbarch initialization function, after the
struct gdbarch has been set up. Unless a default has been set, the most recently appended
sniffer will be tried first.

The main frame unwinding sniffer (as set by frame_unwind_append_sniffer) returns a struc-
ture specifying a set of sniffing functions:

15 Copyright © 2008 Embecosm Limited

ECOSM

struct frame_unwind

{
enum frame_type type;
frame_this_id_ftype *this_id;
frame_prev_register_ftype *prev_register;
const struct frame_data *unwind_data;

frame_sniffer_ftype *sniffer;

frame_prev_pc_ftype *prev_pc;

frame_dealloc_cache_ftype *dealloc_cache;
};

The type field indicates the type of frame this sniffer can handle: normal, dummy (see
push_dummy_call in Section 2.3), signal handler or sentinel. Signal handlers sometimes have
their own simplified stack structure for efficiency, so may need their own handlers.

unwind_data holds additional information which may be relevant to particular types of frame.
For example it may hold additional information for signal handler frames.

The remaining fields define functions that yield different types of information when given a
pointer to the NEXT stack frame. Not all functions need be provided. If an entry is NULL, the
next sniffer will be tried instead.

. this_id determines the stack pointer and function (code entry point) for THIS stack
frame.

. prev_register determines where the values of registers for the PREVIOUS stack frame
are stored in THIS stack frame.

. sniffer takes a look at THIS frame's registers to determine if this is the appropriate
unwinder.

. prev_pc determines the program counter for THIS frame. Only needed if the program

counter is not an ordinary register (see prev_pc in Section 2.3).

. dealloc_cache frees any additional memory associated with the prologue cache for this
frame (see Section 2.3.6.2).

In general it is only the this_id and prev_register functions that need be defined for custom
sniffers.

The frame base sniffer is much simpler. It is a struct frame_base, which refers to the corre-
sponding struct frame_unwind and provides functions yielding various addresses within the
frame.

struct frame_base

{
const struct frame_unwind *unwind;
frame_this_base_ftype *this_base;
frame_this_locals_ftype *this_locals;
frame_this_args_ftype *this_args;
};

All these functions take a pointer to the NEXT frame as argument. this_base returns the base
address of THIS frame, this_locals returns the base address of local variables in THIS frame
and this_args returns the base address of the function arguments in this frame.

16 Copyright © 2008 Embecosm Limited

ECOSM

As described above the base address of a frame is the address immediately before the start of
the NEXT frame. For a falling stack, this is the lowest address in the frame and for a rising
stack it is the highest address in the frame. For most architectures the same address is also
the base address for local variables and arguments, in which case the same function can be
used for all three entries.

It is worth noting that if it cannot be determined in any other way (for example by there being
a register with the name "fp"), then the result of the this_base function will be used as the
value of the frame pointer variable $fp in GDB

2.4. Target Operations

The communication with the target is down to a set of target operations. These operations are
held in a struct target_ops, together with flags describing the behavior of the target. The
struct target_ops elements are defined and documented in target.h. The sections following
describe the most important of these functions.

2.4.1. Target Strata

GDB has several different types of target: executable files, core dumps, executing processes
etc. At any time, GDB may have several sets of target operations in use. For example target
operations for use with an executing process (which can run code) might be different from the
operations used when inspecting a core dump.

All the targets GDB knows about are held in a stack. GDB walks down the stack to find the set
of target operations suitable for use. The stack is organized as a series of strata of decreasing
importance: target operations for threads, then target operations suitable for processes, target
operations to download remote targets, target operations for core dumps, target operations
for executable files and at the bottom target operations for dummy targets. So GDB when
debugging a running process will always select target operations from the process_stratum if
available, over target operations from the file stratum, even if the target operations from the
file stratum were pushed onto the stack more recently.

At any particular time, there is a current target, held in the global variable current_target.
This can never be NULL—if there is no other target available, it will point to the dummy target.

target.h defines a set of convenience macros to access functions and values in the
current_target. Thus current_target->to_xyz can be accessed as target_xyz.

2.4.2, Specifying a New Target

Some targets (sets of target operations in a struct target_ops) are set up automatically by
GDB—these include the operations to drive simulators (see Section 2.6 and the operations to
drive the GDB Remote Serial Protocol (RSP) (see Section 2.7).

Other targets must be set up explicitly by the implementer, using the add_target function. By
far the most common is the native target for native debugging of the host. Less common is to
set up a non-native target, such as the JTAG target used with the OpenRISC 1000

2.4.2.1. Native Targets

A new native target is created by defining a function _initialize_arch_os_nat for the archi-
tecture, arch and operating system os, in the source file arch-os-nat.c. A fragment of a make-

! For a new remote target of any kind, the recommended approach is to use the standard GDB Remote Serial Protocol
(RSP) and have the target implement the server side of this interface. The only remote targets remaining are historic
legacy interfaces, such as the OpenRISC 1000 Remote JTAG Protocol.

17 Copyright © 2008 Embecosm Limited

ECOSM

file to create the binary from the source is created in the file config/arch/os .mh with a header
giving any macro definitions etc in config/arch/nm-os.h (which will be linked to nm.h at build
time).

The _initialize_ function should create a new struct target_ops and call add_target to
add this target to the list of available targets.

For new native targets there are standard implementations which can be reused, with just one
or two changes. For example the function linux_trad_target returns a struct target_ops
suitable for most Linux native targets. It may prove necessary only to alter the description field
and the functions to fetch and store registers.

2.4.2.2. Remote Targets

For a new remote target, the procedure is a little simpler. The source files should be added to
configure.tgt, just as for the architectural description (see Section 2.3). Within the source
file, define a new function _initialize_remote_arch to implement a new remote target, arch.

For new remote targets, the definitions in remote.c used to implement the RSP provide a good
starting point.

2.4.3. struct target_ops Functions and Variables Providing Information
These functions and variables provide information about the target. The first group identifies
the name of the target and provides help information for the user.

. to_shortname. This string is the name of target, for use with GDBs target. Setting
to_shortname to foo means that target foo will connect to the target, invoking to_open
for this target (see below).

. to_longname. A string giving a brief description of the type of target. This is printed with
the info target information (see also to_files_info below).

. to_doc. The help text for this target. If the short name of the target is foo, then the
command help target will print target foo followed by the first sentence of this help
text. The command help target foo will print out the complete text.

. to_files_info. This function provides additional information for the info target com-
mand.

The second group of variables provides information about the current state of the target.

. to_stratum. An enumerated constant indicating to which stratum this
struct target_ops belongs

. to_has_all_memory. Boolean indicating if the target includes all of memory, or only part
of it. If only part, then a failed memory request may be able to be satisfied by a different
target in the stack.

. to_has_memory. Boolean indicating if the target has memory (dummy targets do not)

. to_has_stack. Boolean indicating if the target has a stack. Object files do not, core
dumps and executable threads/processes do.

. to_has_registers. Boolean indicating if the target has registers. Object files do not, core
dumps and executable threads/processes do.

18 Copyright © 2008 Embecosm Limited

ECOSM

to_has_execution. Boolean indicating if the target is currently executing. For some tar-
gets that is the same as if they are capable of execution. However some remote targets
can be in the position where they are not executing until create_inferior or attach
is called.

2.4.4. struct target_ops Functions Controlling the Target Connection

These functions control the connection to the target. For remote targets this may mean es-
tablishing and tearing down links using protocols such as TCP/IP. For native targets, these
functions will be more concerned with setting flags describing the state.

to_open. This function is invoked by the GDB target command. Any additional argu-
ments (beyond the name of the target being invoked) are passed to this function. to_open
should establish the communications with the target. It should establish the state of the
target (is it already running for example), and initialize data structures appropriately.
This function should not start the target running if it is not currently running—that is
the job of the functions (to_create_inferior and to_resume) invoked by the GDB run
command.

to_xclose and to_close. Both these functions should close the remote connection.
to_close is the legacy function. New implementations should use to_xclose which
should also free any memory allocated for this target.

to_attach. For targets which can run without a debugger connected, this function at-
taches the debugger to a running target (which should first have been opened).

to_detach. Function to detach from a target, leaving it running.

to_disconnect. This is similar to to_detach, but makes no effort to inform the target
that the debugger is detaching. It should just drop the connection to the target.

to_terminal_inferior. This function connects the target's terminal I/O to the local ter-
minal. This functionality is not always available with remote targets.

to_rcmd. If the target is capable of running commands, then this function requests that
command to be run on the target. This is of most relevance to remote targets.

2.4.5. struct target_ops Functions to Access Memory and Registers

These functions transfer data to and from the target registers and memory.

to_fetch_registers and to_store_registers. Functions to populate the register cache
with values from the target and to set target registers with values in the register cache.

to_prepare_to_store. This function is called prior to storing registers to set up any
additional information required. In most cases it will be an empty function.

to_load. Load a file into the target. For most implementations, the generic function,
generic_load, which is reuses the other target operations for memory access is suitable.

to_xfer_partial. This function is a generic function to transfer data to and from the
target. Its most important function (often the only one actually implemented) is to load
and store data from and to target memory.

2.4.6. struct target_ops Functions to Handle Breakpoints and Watchpoints

For all targets, GDB can implement breakpoints and write access watchpoints in software,
by inserting code in the target. However many targets provide hardware assistance for these
functions which is far more efficient, and in addition may implement read access watchpoints.

19

Copyright © 2008 Embecosm Limited

ECOSM

These functions in struct target_ops provide a mechanism to access such functionality if
it is available.

to_insert_breakpoint and to_remove_breakpoint. These functions insert and remove
breakpoints on the target. They can choose to use either hardware or software break-
points. However if the insert function allows use of hardware breakpoints, then the GDB
command set breakpoint auto-hw off will have no effect.

to_can_use_hw_breakpoint. This function should return 1 (true) if the target can set a
hardware breakpoint or watchpoint and O otherwise. The function is passed an enumer-
ation to indicate whether watchpoints or breakpoints are being queried, and should use
information about the number of hardware breakpoints/watchpoints currently in use
to determine if a breakpoint/watchpoint can be set.

to_insert_hw_breakpoint and to_remove_hw_breakpoint. Functions to insert and re-
move hardware breakpoints. Return a failure result if no hardware breakpoint is avail-
able.

to_insert_watchpoint and to_remove_watchpoint. Functions to insert and remove
watchpoints.

to_stopped_by_watchpoint. Function returns 1 (true) if the last stop was due to a watch-
point.

to_stopped_data_address. If the last stop was due to a watchpoint, this function returns
the address of the data which triggered the watchpoint.

2.4.7. struct target_ops Functions to Control Execution

for targets capable of execution, these functions provide the mechanisms to start and stop
execution.

to_resume. Function to tell the target to start running again (or for the first time).

to_wait. Function to wait for the target to return control to the debugger. Typically
control returns when the target finishes execution or hits a breakpoint. It could also
occur if the connection is interrupted (for example by ctrl-C).

to_stop. Function to stop the target—used whenever the target is to be interrupted (for
example by ctrl-C).

to_kill. Kill the connection to the target. This should work, even if the connection to
the target is broken.

to_create_inferior. For targets which can execute, this initializes a program to run,
ready for it to start executing. It is invoked by the GDB run command, which will sub-
sequently call to_resume to start execution.

to_mourn_inferior. Tidy up after execution of the target has finished (for example
after it has exited or been killed). Most implementations call the generic function,
generic_mourn_inferior, but may do some additional tidying up.

2.5. Adding Commands to GDB

As noted in Section 2.2, GDB's command handling is extensible. Commands are grouped into
a number of command lists (of type struct cmd_list_element), pointed to by a number of
global variables (defined in cli-cmds.h). Of these, cmdlist is the list of all defined commands,

20

Copyright © 2008 Embecosm Limited

ECOSM

with separate lists defined for sub-commands of various top level commands. For example
infolist is the list of all info sub-commands.

Each command (or sub-command) is associated with a callback function which imple-
ments the behavior of the functions. There are additional requirements for functions
which set or show values within GDB. Each function also takes a documentation string
(used by the help command). Functions for adding commands all return a pointer to the
struct cmd_list_element for the command added (which is not necessarily the head of its
command list). The most useful functions are:

. add_cmd. Add a function to a command list.

. add_com. Add a function to the main command list, cmdlist. This is a convenience wrap-
per for add_cmd.

. add_prefix_cmd. Add a new prefix command. This command should have its own func-
tion for use if it is called on its own, and a global command list pointer specific to the
prefix command to which all its sub-commands will be added. If a prefix command is
called with an unknown sub-command, it can either give an error or call the function
of the prefix command itself. Which of these is used is specified by a flag in the call to
add_prefix_cmd.

. add_alias_cmd. Add an alias for a command already defined.
. add_info. Add a sub-command to the info. A convenience wrapper for add_cmd.

New commands are usually added in the _initialize_arch function after the struct gdbarch
has been defined.

2.6. Simulators

GDB enables implementers to link gdb to a built-in simulator, so that a simulated target may
be executed through use of the target sim command.

The simulator should be built as a library, 1libsim.a, implementing the standard GDB sim-
ulator interface. The location of the library is specified by setting the gdb_sim parameter in
configure.tgt.

The interface consists of a set of functions which should be implemented. The detailed speci-
fication is found in the header remote-sim.h in the include directory.

. sim_open. Initialize the simulator.

. sim_close. Destroy the simulator instance, including freeing any memory.

. sim_load. Load a program into the simulator's memory.

. sim_create_inferior. Prepare to run the simulated program. Don't actually run it until

sim_resume (see below) is called.

. sim_read and sim_write. Read and write bytes from and to the simulator's memory.

. sim_fetch_register and sim_store_register. Read and write the simulator's registers.
. sim_info. Print information for the info sim command.

. sim_resume. Resume (or start) execution of the simulated program.

. sim_stop. Stop execution of the simulated program.

21 Copyright © 2008 Embecosm Limited

ECOSM

. sim_stop_reason. Return the reason why the program stopped.

. sim_do_command. Execute some arbitrary command that the simulator supports.

2.7. Remote Serial Protocol (RSP)

The GDB Remote Serial Protocol is a general purpose protocol for connecting to remote targets.
It is invoked through the target remote and target extended-remote commands.

The protocol is a simple text command-response protocol. The GDB session acts as the client
to the protocol. It issues commands to the server, which in turn must be implemented by the
target. Any remote target can communicate with GDB by implementing the server side of the
RSP. A number of stub implementations are provided for various architectures, which can be
used as the basis of new implementations. The protocol is fully documented as an appendix
within the main GDB User Guide [3].

It is strongly recommended that any new remote target should be implemented using the RSP,
rather than by creating a new remote target protocol.

2.7.1. RSP Client Implementation

The client implementation can be found in the source files remote.h and remote.c in the gdb
subdirectory. These implement a set of target operations, as described in Section 2.4. Each
of the standard operations is mapped into a sequence of RSP interactions with the server on
the target.

2.7.2. RSP Server Implementation

RSP server implementation is a large subject in its own right, and does not form a direct part
of the GDB implementation (since it is part of the target, not the debugger).

A comprehensive "Howto" has been written by Embecosm, describing the implementation tech-
niques for RSP servers, illustrated by examples using the OpenRISC 1000 architectural sim-
ulator, Orlksim as RSP target [2].

2.8. GDB File Organization

The bulk of the GDB source code is in a small number of directories. Some components of
GDB are libraries used elsewhere (for example BFD is used in GNU binutils), and these have
their own directory. The main directories are:

. include. Header files for information which straddles major components. For example
the main simulator interface header is here (remote-sim.h), because it links GDB (in
directory gdb) to the simulators (in directory sim). Other headers, specific to a particular
component reside in the directory of that component.

. bfd. The Binary File Descriptor library. If a new object file type must be recognized, it
should be added here.

. gdb. The main GDB directory. All source files should include defs.h first and then any
other headers they reference. Headers should also include any headers they reference,
but may assume that defs.h has been included.

The file configure.tgt contains a huge switch statement to match targets specified to

the main configure command. Add a new target by incorporating its pattern match in
this file.

The sub-directory config contains target specific configuration information for native
targets.

22 Copyright © 2008 Embecosm Limited

ECOSM

. libiberty. Before POSIX and glibc, this was a GNU project to provide a set of standard
functions. It lives on in GDB. Most valuable are its free store management and argument
parsing functions.

. opcodes. This contains disassemblers for use by GDB (the disassemble command);. In
a directory of its own, because this code is also used in binutils.

. sim. The simulators for various targets. Each target architecture simulator is built in
its own sub-directory.

2.9. Testing GDB

Running the GDB test suite requires that the DejaGNU package is installed. The tests can
then be run with:

make check

On completion of the run, the summary results will be in the gdb/testsuite directory in
gdb.sum with the detailed log in gdb.log

For the most comprehensive tests in an environment where host and target differ, DejaGNU
needs some additional configuration. This can be achieved by setting the DEJAGNU environment
variable to refer to a suitable configuration file, and defining a custom board configuration file
in the directory ~/boards. These configuration files can be used to specify a suitable simulator
and how to connect it when running tests.

2.10. Documentation

Some of GDB sub-directories in turn have doc sub-directories. The documentation is written
in texinfo [9], from which documents can be generated as PDF, PostScript, HTML or info files.
The documentation is not built automatically with make all, nor with make doc.

To create documentation, change to the individual documentation directory and use
make html make pdf, make ps or make info as required.

The main documents of interest are:
. bfd/doc/bfd.texinfo. This is the BFD manual.
. gdb/doc/gdb.texinfo. This is the main GDB user guide [3].

. gdb/doc/gdbint.texinfo. This is the internals user guide [4]. It is essential reading for
any developer porting the code.

The exception to automatic building is with make install. This will build info files for any
documents in the gdb/doc directory and install them in the info sub-directory of the install
directory.

2.11. Example Procedure Flows in GDB

It is instructive to see how the architecture specification functions and target operations are
invoked in response to various GDB commands. This gives useful points for debugging a new
architecture port.

In the following sections, several procedure flows are illustrated by sequence diagrams. These
show the calling chain for procedures. Only the key functions are shown - the actual calls
usually involve several intermediate function calls.

23 Copyright © 2008 Embecosm Limited

ECOSM

2.11.1. Initial Start Up
Figure 2.2 shows the sequence diagram for GDB start up.

gdb_main
gdb_init

initialize_all_files

_initialize_arch_tdep

_initialize_arch_remote —

initialize_current_architecture iﬁi
arch_gdbarch_init

current_interp_command_loop ——

Figure 2.2. Sequence diagram for GDB start up

On start up, the GDB initialization function, gdb_init calls all the _initialize functions,
including those for any architectures or remote targets.

Having initialized all the architectures, the first alphabetically is selected as the default archi-
tecture by initialize_current_architecture, and its initialization function, (by convention
arch_gdbarch_init) is called.

Control returns to gdb_main, which sits in the command interpreter, waiting for commands
to execute.

2.11.2. The GDB target Command
Figure 2.3 shows the high level sequence diagram for GDB in response to the target command.

current_interp_command_loop —} — — — — — — — — — — — — — — ——

target_open
start_remote

wait_for_inferior

target_wait

handle_inferior_event —

A4

normal_stop —/

Figure 2.3. High level sequence diagram for the GDB target command

The target command maps directly on to the current target to_open. A typical implementa-
tion establishes physical connection to the target (for example by opening a TCP/IP link to a
remote target). For a remote target, it then typically calls start_remote, which waits for the
target to stop (using the current target to_wait function), determines the reason for stopping
(handle_inferior_event) and then marks this as a normal stop (normal_stop).

handle_inferior_event is a central function in GDB. Whenever control is returned to GDB,
via the target to_wait function, it must determine what has happened and how it should be

24 Copyright © 2008 Embecosm Limited

ECOSM

handled. Figure 2.4 shows the behavior of handle_inferior_event in response to the target
command.

handle_inferior_event
read_pc_pid

gdbarch_register_type

target_fetch_registers —

watchpoints_triggered iﬁ)
target_stopped_by_watchpoint
Figure 2.4. handle_inferior_event sequence diagram in response to the GDB target
command

handle_inferior_event needs to establish the program counter at which execution stopped,
so calls read_pc_pid. Since the program counter is a register, this causes creation of a regis-
ter cache, for which the type of each register must be determined by gdbarch_register_type
(a one-off exercise, since this never changes). Having determined register types, the regis-
ter cache is populated with the value of the program counter by calling the current target
to_fetch_registers for the relevant register.

handle_inferior_event then determines if the stop was due to a breakpoint or watchpoint. The
function watchpoints_triggered uses the target target_stopped_by_watchpoint to determine
if it was a watchpoint which triggered the stop.

The call to normal_stop also invokes the struct gdbarch functions, calling gdbarch_unwind_pc
to establish the current program counter and and frame sniffer functions to establish the
frame sniffer stack.

2.11.3. The GDB load Command

Figure 2.5 shows the high level sequence diagram for GDB in response to the load command.
This maps to the current target's to_load function, which in most cases will end up calling
the current target's to_xfer_partial function once for each section of the image to load it
into memory.

current_interp_command_loop
target_load

target_xfer_partial

repeat

Figure 2.5. Sequence diagram for the GDB load command
The load function will capture data from the loaded file, most importantly its start address

for execution.

2.11.4. The GDB break Command

Figure 2.6 shows the high level sequence diagram for GDB in response to the break command.
This example is for the case where the target of the break is a symbol (i.e. a function name)
in the target executable.

25 Copyright © 2008 Embecosm Limited

ECOSM

current_interp_command_loop
break_command

parse_breakpoint_sals

gdbarch_skip_prologue
Figure 2.6. Sequence diagram for the GDB break command

Most of the action with breakpoints occurs when the program is set running, at which any
active breakpoints are installed. However for any break command, the address for the break
must be set up in the breakpoint data structure.

For symbolic addresses, the start of the function can be obtained from the line number in-
formation held for debugging purposes in the symbol table (known as symbol-and-line infor-
mation, or SAL). For a function, this will yield the start address of the code. However the
breakpoint must be set after the function prologue. gdbarch_skip_prolog is used to find that
address in the code.

2.11.5. The GDB run Command
Figure 2.7 shows the high level sequence diagram for GDB in response to the run command.

current_interp_command_loop

run_command

target_create_inferior

<
<

target_find_description

proceed | — Fg—!:i
gdbarch_single_step_through_delay _lg
target_insert_breakpoint —

target_resume |"_|
wait_for_inferior]
normal_stop x

Figure 2.7. High level sequence diagram for the GDB run command

The run command must create the inferior, insert any active breakpoints and watchpoints,
and then start execution of the inferior. Control does not return to GDB until the target reports
that it has stopped.

The top level function implementing the run command is run_command. This creates the inferi-
or, but calling the current target's to_create_inferior function. GDB supports targets which
can give a dynamic description of their architecture (for example the number of registers avail-
able). This is achieved through the to_find_description function of the current target (which
is an empty function by default).

Execution is started by the proceed. This must first determine if the code is restart-
ing on an instruction which will need stepping through a delay slot (so that code nev-

26 Copyright © 2008 Embecosm Limited

ECOSM

er stops on a delay slot). If this functionality is required, it is implemented by the
gdbarch_single_sep_through_delay function.

Active breakpoints are inserted using the current target's to_insert_breakpoint function. The
code is then run using the to_resume function of the current target.

GDB then calls wait_for_inferior, which will wait for the target to stop, and then determine
the reason for the stop. Finally normal_stop will remove the breakpoints from the target code
and report to the user the current state of the target as appropriate.

Much of the detailed processing takes place in the wait_for_inferior and normal_stop func-
tions (see also their use in Section 2.11.2). These are important functions and it is useful to
look at their behavior in more detail.

Figure 2.8 shows the sequence diagram for wait_for_inferior when handling the GDB run
command.

wait_for_inferior ﬁ ______ —
target_wait

handle_inferior_event

watchpoints_triggered

target_stopped_by_watchpoint

Figure 2.8. Sequence diagram for the GDB wait_for_inferior function as used by the
run command

Once again the key work is in handle_inferior_event. The code checks for watchpoints using
the to_stopped_by_watchpoint function of the current target. The function also checks break-
points, but since it already knows the current program counter (set by target_wait when con-
trol is returned), it needs no further call to the target operations. target_wait will have report-
ed if it stopped due to an exception that could be due to a breakpoint. handle_inferior_event
can then look up the program counter in the list of active breakpoints, to determine which
breakpoint was encountered.

Figure 2.9 shows the sequence diagram for normal_stop when handling the GDB run com-
mand. In this example the stop was due to the target encountering a breakpoint.

normal_stop - ---1
remove_breakpoints

target_remove_breakpoint

arch_frame_sniffer —

print_stack_frame iﬁ
arch_frame_this_id
Figure 2.9. Sequence diagram for the GDB normal_stop function as used by the run

command

The first action is to remove breakpoints. This ensures that the target executable is returned
to its normal state, without any trap or similar code inserted.

27 Copyright © 2008 Embecosm Limited

ECOSM

The frame sniffers for the target are identified, using the frame sniffer for the architecture,
arch_frame_sniffer. The current stack frame is then printed for the user. This requires use of
the frame sniffer to identify the ID (and hence all the other data) of THIS frame from the NEXT
frame (arch_frame_this_id here). print_stack_frame will start from the sentinel frame and
work inwards until it finds the stack frame containing the current stack pointer and program
counter.

2.11.6. The GDB backtrace Command

Figure 2.10 shows the high level sequence diagram for GDB in response to the backtrace
command. This sequence shows the behavior for the first call to backtrace after control has
returned to GDB.

current_interp_command_loop
backtrace_command
print_frame_info
print_frame

print_frame_args

A 4

get_func_type
I—v_.l
repeat x 2

Figure 2.10. High level sequence diagram for the GDB backtrace command

The main command function is backtrace_command, which uses print_frame_info to print the
name of each function on the stack with its arguments.

The first frame is already known from the program counter and stack pointer of the stopped
target, so is printed out by print_frame. That will ultimately use the current target's
to_xfer_partial function to get the local argument values.

Since this is the first backtrace after the program stopped, the stack pointer and program
counter are each obtained from the sentinel frame using get_func_type. print_frame is then
called for each frame in turn as the stack is unwound until there are no more stack frames.
The information in each frame is built up using the architecture's frame sniffers.

It is useful to look at print_frame in more detail. Figure 2.11 shows the sequence diagram
for the second series of calls to the print_frame function when handling the GDB backtrace
command, used to print out the stack frame.

print_frame

print_frame_args

gdbarch_unwind_pc

gdbarch_unwind_sp —1

A 4
read_var_value lﬁ
arch_frame_prev_sniffer

repeat

Figure 2.11. Sequence diagram for the GDB print_frame function used by the backtrace
command

28 Copyright © 2008 Embecosm Limited

ECOSM

The information about the function on the stack frame can be obtained from the program
counter and stack pointer associated with the stack frame. These are obtained by calls to the
gdbarch_unwind_pc and gdbarch_unwind_sp functions.

Then for each argument, its value must be printed out. The symbol table debug data will
identify the arguments, and enough information for GDB to work out if the value is on the
stack or in a register. The frame sniffer function to get registers from the stack frame (in this
example arch_frame_prev_register) is used to get the values of any registers as appropriate.

The precise sequence of calls depends on the functions in the stack frame, the arguments they
have, and whether those arguments are in registers or on the stack.

2.11.7. The GDB continue Command after a Breakpoint

The final sequence shows the behavior when execution is resumed after a breakpoint with the
continue command. Figure 2.12 shows the high level sequence diagram for GDB in response
to the continue command. This sequence shows the behavior for the first call to continue
after a run stopped due to a breakpoint.

current_interp_comm... —} — _
continue_command @0 [} - - - - - - — — — — — — — — — — — — —
proceed
wait_for_inferior

target_wait

handle_inferior_event

target_resume

, _V_‘l d -
single-steppe continuous
normal_stop g PP |"]

Figure 2.12. High level sequence diagram for the GDB continue command after a
breakpoint

The command functionality is provided by the continue_command, which calls the proceed
function for much of its behavior.

proceed calls the to_resume function of the current target to resume execution. For this first
call, the breakpoint(s) removed when execution completed after the run command are not
replaced and the target resumption is only for a single instruction step. This allows the target
to be stepped past the breakpoint without triggering an exception.

proceed then uses wait_for_inferior to wait for control to return after the single step and
diagnose the next action. Waiting uses the to_wait function of the current target, then calls
handle_inferior_event to analyze the result. In this case, handle_inferior_event determines
that a target has just stepped past a breakpoint. It reinserts the breakpoints and calls the
target to_resume function again, this time to run continuously.

wait_for_inferior will use the current target to_wait function again to wait for the target to
stop executing, then again call the handle_inferior_event to process the result. This time,
control should return to GDB, so breakpoints are removed, and handle_inferior_event and
wait_for_inferior return. proceed calls normal_stop to tidy up and print out a message about
the current stack frame location where execution has stopped (see Section 2.11.5.).

29 Copyright © 2008 Embecosm Limited

ECOSM

It is useful to examine the behavior of the first call to handle_inferior_event, to see the se-
quence for completing the single step and resuming continuous execution. Figure 2.13 shows
the sequence diagram for the first call to handle_inferior_event.

handle_inferior_event ﬁ —
target_stopped_by_watchpoint

gdbarch_single_step_through_delay

keep_going

target_insert_breakpoint

repeat
target_resume P []

Figure 2.13. Sequence diagram for the GDB handle_inferior_event function after single
stepping an instruction for the continue command

handle_inferior_event first determines if a watchpoint has now been triggered. If this is not
the case, it checks if the processor is now in the delay slot of an instruction (requiring another
single-step immediately). Having determined that continuous execution is appropriate, it calls
the function keep_going to reinsert active breakpoints (using the to_insert_breakpoint func-
tion of the current target). Finally it calls the to_resume function of the current target without
the single-step flag set to resume continuous execution.

2.12. Summary: Steps to Port a New Architecture to GDB

Porting a new architecture to GDB can be broken into a number of steps.

. Ensure a BFD exists for executables of the target architecture in the bfd directory. If one
does not exist, create one by modifying an existing similar one.

. Implement a disassembler for the target architecture in the opcodes directory.

. Define the target architecture in the gdb directory. Add the pattern for the new target
to configure.tgt with the names of the files that contain the code. By convention the
target architecture definition for an architecture arch is placed in arch-tdep.c.

Within arch-tdep.c define the function _initialize_arch_tdep which calls
gdbarch_register to create the new struct gdbarch for the architecture.

. If a new remote target is needed, consider adding a new remote target by defining a func-
tion _initialize_remote_arch. However if at all possible use the Remote Serial Protocol
for this and implement the server side protocol independently with the target.

. If desired implement a simulator in the sim directory. This should create the library
libsim.a implementing the interface in remote-sim.h (found in the include directory).

. Build and test. If desired, lobby the GDB steering group to have the new port included
in the main distribution!

. Add a description of the new architecture to the "Configuration Specific Information"
section in the main GDB user guide (gdb/doc/gdb.texinfo [3]).

The remainder of this document shows how this process was used to port GDB to the Open-
RISC 1000 architecture.

30 Copyright © 2008 Embecosm Limited

ECOSM

Chapter 3. The OpenRISC 1000 Architecture

The OpenRISC 1000 architecture defines a family of free, open source RISC processor cores.
It is a 32 or 64-bit load and store RISC architecture designed with emphasis on performance,
simplicity, low power requirements, scalability and versatility.

The OpenRISC 1000 is fully documented in its Architecture Manual [8].

From a debugging perspective, there are three data areas that are manipulated by the instruc-
tion set.

1. Main memory. A uniform address space with 32 or 64-bit addressing. Provision for sep-
arate or unified instruction and data and instruction caches. Provision for separate or
unified, 1 or 2-level data and instruction MMUs.

2. General Purpose Registers (GPRs). Up to 32 registers, 32 or 64-bit in length.

3. Special Purpose Registers (SPRs). Up to 32 groups each with up to 2048 registers, up
to 32 or 64-bit in length. These registers provide all the administrative functionality
of the processor: program counter, processor status, saved exception registers, debug
interface, MMU and cache interfaces, etc.

The Special Purpose Registers (SPRs) represent a challenge for GDB, since they represent
neither addressable memory, nor have the characteristics of a register set (generally modest
in number).

A number of SPRs are of particular significance to the GDB implementation.

. Configuration registers. The Unit Present register (SPR 1, UPR), CPU Configuration register
(SPR 2, CPUCFGR) and Debug Configuration register (SPR 7, DCFGR) identify the features
available in the particular OpenRISC 1000 implementation. This includes the instruction
set in use, number of general purpose registers and configuration of the hardware debug
interface.

. Program counters. The Previous Program Counter (SPR 0x12, PPC) is the address of the
instruction just executed. The Next Program Counter (SPR 0x10, NPC) is the address of
the next instruction to be executed. The NPC is the value reported by GDBs $pc variable.

. Supervision Register. The supervision register (SPR 0x11, SR) represents the current sta-
tus of the processor. It is the value reported by GDBs status register variable, $ps.

Of particular importance are the SPRs in group 6 controlling the debug unit (if present). The
debug unit can trigger a trap exception in response to any one of up to 10 watchpoints. Watch-
points are logical expressions built by combining matchpoints, which are simple point tests of
particular behavior (has a specified address been accessed for example).

. Debug Value and Control registers. There are up to 8 pairs of Debug Value (SPR 0x3000-
0x3007, DVRO through DVR7) and Debug Control (SPR 0x3008-0x300f, DCRO through DCR7)
registers. Each pair is associated with one hardware matchpoint. The Debug Value reg-
ister in each pair gives a value to compare against. The Debug Control register indicates
whether the matchpoint is enabled, the type of value to compare against (instruction
fetch address, data load and/or store address data load and/or store value) and the
comparison to make (equal, not equal, less than, less than or equal, greater than, greater
than or equal), both signed and unsigned. If the matchpoint is enabled and the test met,
the corresponding matchpoint is triggered.

31 Copyright © 2008 Embecosm Limited

ECOSM

Debug Watchpoint counters. There are two 16-bit Debug Watchpoint Counter registers
(SPR 0x3012-0x3013, DWCRO and DWCR1), associated with two further matchpoints. The
upper 16 bits are a value to match, the lower 16 bits a counter. The counter is incre-
mented when specified matchpoints are triggered (see Debug Mode register 1). When the
count reaches the match value, the corresponding matchpoint is triggered.

Caution

@ There is potential ambiguity in that counters are incremented in response to
matchpoints and also generate their own matchpoints. It is not good practice
to set a counter to increment on its own matchpoint!

Debug Mode registers. There are two Debug Mode registers to control the behavior of the
the debug unit (SPR 0x3010-0x3011, DMR1 and DMR2). DMR1 provides a pair of bits for
each of the 10 matchpoints (8 associated with DVR/DCR pairs, 2 associated with coun-
ters). These specify whether the watchpoint is triggered by the associated matchpoint,
by the matchpoint AND-ed with the previous watchpoint or by the matchpoint OR-ed
with the previous watchpoint. By building chains of watchpoints, complex logical tests
of hardware behavior can be built up.

Two further bits in DMR1 enable single step behavior (a trap exception occurs on comple-
tion of each instruction) and branch step behavior (a trap exception occurs on comple-
tion of each branch instruction).

DMR2 contains an enable bit for each counter, 10 bits indicating which watchpoints are
assigned to which counter and 10 bits indicating which watchpoints generate a trap ex-
ception. It also contains 10 bits of output, indicating which watchpoints have generated
a trap exception.

Debug Stop and Reason registers. In normal operation, all OpenRISC 1000 exceptions
are handled through the exception vectors at locations 0x100 through 0xf00. The Debug
Stop register (SPR 0x3014, DSR) is used to assign particular exceptions instead to the
JTAG interface. These exceptions stall the processor, allowing the machine state to be
analyzed through the JTAG interface. Typically a debugger will enable this for trap ex-
ceptions used for breakpointing.

Where an exception has been diverted to the development interface, the Debug Reason
register (SPR 0x3021, DRR) indicates which exception caused the diversion. Note that
although single stepping and branch stepping cause a trap, if they are assigned to the
JTAG interface, they do not set the TE bit in the DRR. This allows an external debugger
to distinguish between breakpoint traps and single/branch step traps.

3.1. The OpenRISC 1000 JTAG Interface
There are two variants of the JTAG interface for use with the OpenRISC 1000.

1.

The original JTAG interface was created as part of the OpenRISC SoC project, ORPSoC
[10]. It provides three scan chains: one to access to all the SPRs, one to access external
memory and one providing control of the CPU. The control scan chain reset, stall or
trace the processor.

A new JTAG interface was provided by Igor Mohor in 2004 [11]. It provides the same
access to SPRs and external memory, but offers a simpler control interface offering only
the ability to stall or reset the processor.

At present the OpenRISC Architectural Simulator, Orlksim, (see Section 3.4) supports the
first of these interfaces.

Three scan chains are provided by both interfaces

32

Copyright © 2008 Embecosm Limited

ECOSM

. RISC_DEBUG (scan chain 1), providing read/write access to the SPRs.

. REGISTER (scan chain 4), providing control of the CPU. In the ORPSoC interface, this
provides multiple registers which are read and written to control the CPU. Of these
register O, MODER, which controls hardware trace, and register 4, RISC_OP, which controls
reset and stall are the most important. Trace is enabled by setting, and disabled by
clearing bit 1 in MODER. Reset and processor stall are triggered and cleared by setting
and clearing respectively bit 1 and bit O in RISC_OP. The stall state may be determined
by reading the stall bit in RISC_OP.

In the Mohor interface, there is a single control register which behaves identically to
RISC_OP in the original debug interface.

. WISHBONE (scan chain 5), providing read/write access to main memory.

Since the General Purpose Registers (GPRs) are mapped to SPR group O, this mechanism also
allows GPRs to be read and written.

3.2. The OpenRISC 1000 Remote JTAG Protocol

Important
A The latest version of GDB for OpenRISC 1000 implements the GDB Remote Serial
Protocol, which is the preferred mechanism for connecting to remote targets [2].

However the protocol described here is retained for backward compatibility. It is
used here as a tutorial vehicle to illustrate how a custom debugging protocol can
be used within GDB

To facilitate remote debugging by GDB, the OpenRISC defines a software protocol describing
JTAG accesses, suitable for transport over TCP/IP via a socket interface.

. Note
\/ This protocol pre-dates the GDB Remote Serial Protocol (see Section 2.7). At some
future date the OpenRISC 1000 Remote JTAG Protocol will be replaced by the RSP.

The OpenRISC 1000 Remote JTAG Protocol is a simple message send/acknowledge protocol.
The JTAG request is packaged as a 32 bit command, 32-bit length and series of 32-bit data
words. The JTAG response is packaged as a 32-bit status and optionally a number of 32-bit
data words. The commands available are:

. OR1K_JTAG_COMMAND_READ (1). Read a single JTAG register. A 32-bit address is provided
in the request. The response includes 64-bits of read data.

. OR1K_JTAG_COMMAND_WRITE (2). Write a single JTAG register. A 32-bit address is provided
in the request and 64-bit data to be written.

. OR1K_JTAG_COMMAND_READ_BLOCK (3). Read multiple 32-bit JTAG registers. A 32-bit ad-
dress of the first register and number of registers to be read is provided in the request.
The response includes the number of registers read and 32-bits of data for each one read.

. OR1K_JTAG_COMMAND_WRITE_BLOCK (4). Write multiple 32-bit JTAG registers. A 32-bit ad-
dress of the first register and number of registers to be written is provided in the request
followed by 32-bits of data to be written for each register.

. OR1K_JTAG_COMMAND_CHAIN (5). Select the scan chain. A 32-bit scan chain number is pro-
vided in the request.

Where the Mohor version of the JTAG interface is being used, addresses for read /write accesses
to the REGISTER scan chain are ignored—there is only one control register.

33 Copyright © 2008 Embecosm Limited

ECOSM

. Note

\/ There is apparently a contradiction in this protocol. Provision is made for individual
registers to be read/written as 64 bits, whereas block read/writes (provided for
communication efficiency) are only 32-bits.

Figure 3.1 shows the structures of all five requests and their corresponding (successful) re-
sponses. Note that if a request fails, the response will only contain the status word.

Request Response
OR1K_JTAG_COMMAND_READ status
Read register length data (MS word)
address ‘ data (LS word)
OR1K_JTAG_COMMAND_WRITE | status I
,,,Jeilg}h,,,,,
Write register address

data (LS word)

OR1K_. JTAG COWlAND READ BLOCK

Read block of registers | — - — — -2 — —— —

num regs (n)

data (reg1ster n 1)

OR1K_. JTAG commn NRITE _BLOCK | status |

Write block of registers num regs

data (reglster n- 1)

0R1K ITAG_ commn CHAIN status

Set scan chain length

~scan cham

Figure 3.1. The OpenRISC 1000 Remote JTAG Protocol data structures

The client side of this protocol (issuing the requests) is implemented by the GDB port for
OpenRISC 1000.

Server side applications may implement this protocol to drive either physical hardware (via
its JTAG port) or simulations, which include the JTAG functionality. Examples of the former
include USB JTAG connectors, such as those produced by ORSoC™ AB. An example of the
latter is the OpenRISC 1000 Architectural Simulator, Orlksim (see Section 3.4).

3.3. Application Binary Interface (ABI)

The ABI for the OpenRISC 1000 is described in Chapter 16 of the Architecture Manual [8].
However the actual GCC compiler implementation differs very slightly from the documented

34 Copyright © 2008 Embecosm Limited

ECOSM

ABI. Since precise understanding of the ABI is critical to GDB, those differences are docu-
mented here.

. Register Usage: R12 is used as another callee-saved register. It is never used to return
the upper 32 bits of a 64-bit result on a 32-bit architecture. All values greater than 32-
bits are returned by a pointer.

. Although the specification requires stack frames to be double word aligned, the current
GCC compiler implements single word alignment.

. Integral values more than 32 bits (64 bits on 64-bit architectures), structures and unions
are returned as pointers to the location of the result. That location is provided by the
calling function, which passes it as a first argument in GPR 3. In other words, where a
function returns a result of this type, the first true argument to the function will appear
in R4 (or R5/R6 if it is a 64-bit argument on a 32-bit architecture).

3.4. Orlksim: the OpenRISC 1000 Architectural Simulator

Orlksim is an instruction set simulator (ISS) for the OpenRISC 1000 architecture. At present
only the 32-bit architecture is modeled. In addition to modeling the core processor, Orlksim
can model a number of peripherals, to provide the functionality of a complete System-on-Chip
(SoC).

Orlksim models the OpenRISC 1000 JTAG interface and implements the OpenRISC 1000
Remote JTAG protocol server side. It was used as the testbed for this port of GDB

The JTAG interface models the behavior of the old ORPSoC (with support for multiple control
registers and hardware trace). A future release will provide an option to support Igor Mohor's
JTAG interface.

" Note

\\% Porting GDB uncovered a number of bugs in Orlksim. The implementation is now
quite old, and predates the current OpenRISC 1000 specification. A patch (available
from www.embecosm.com/download.html) is available to fix these bugs.

35 Copyright © 2008 Embecosm Limited

http://www.embecosm.com/download.html

ECOSM

Chapter 4. Porting the OpenRISC 1000
Architecture

This chapter describes the steps in porting the OpenRISC 1000 architecture to GDB. It uses
the information and data structures described in Chapter 2.

The OpenRISC 1000 version of GDB is documented briefly in the GDB User Guide [3].
A more comprehensive tutorial [6] is provided within the gdb/doc sub-directory in the file
orlk.texinfo.

Strictly speaking this was not a new port. An old port existed for GDB 5.3. However GDB
has changed substantially since that time, and an almost complete reimplementation was
required.

Tip
6 When working with any large code base a TAGS file is invaluable. This allows im-
8 mediate lookup of any procedure or variable across the entire code base. Normally
for any GNU project, this is achieved with the command make tags. However this

does not work for GDB—there is a problem with the tags target in the opcodes
directory.

However tags building does work in the gdb directory, so a TAGS file can be built
in that directory by:

cd gdb
make tags
cd ..

4.1. BFD Specification

The BFD specification for OpenRISC 1000 already existed (it is part of binutils), so there was
no need to implement this. The existing code is just reused.

4.2. OpenRISC 1000 Architecture Specification

The code resides in the gdb sub-directory. The main architectural specification is in orlk-
tdep.c, with and OpenRISC 1000 wide header in orlk-tdep.h. Support for the OpenRISC 1000
Remote JTAG interface is in remote-orilk.c with the detailed protocol in orlk-jtag.c and a
protocol header in orlk-jtag.h.

There are several targets which can use the OpenRISC 1000 architecture. These all begin
orl6, or32 or or32. The configure.tgt is edited to add patterns for these that will pick up the
binaries generated from these source files.

orle* | or32* | or64*)
Target: OpenCores OpenRISC 1000 architecture
gdb_target_obs="orlk-tdep.o remote-orik.o orlk-jtag.o"

..
s

36 Copyright © 2008 Embecosm Limited

ECOSM

Caution

@ configure.tgt only specifies binaries, so cannot show dependencies on headers.
To correct this, Makefile.in can be edited, so that automake and configure will
generate a Makefile with the correct dependencies.

The architecture definition is created from the _initialize_orilk_tdep by a call to
gdbarch_register. That function also initializes the disassembler (build_automata) and adds
two new commands: a sub-command to the info command to read SPRs and a new top level
support command, spr to set the value of SPRs.

4.2.1. Creating struct gdbarch

gdbarch_register is called for BFD type bfd_arch_or32 with the initialization function
orlik_gdbarch_init and the target specific dump function, orik_dump_tdep.

Future implementations may make additional calls to use the same function to create a 64-
bit version of the architecture.

gdbarch_init receives the struct gdbarch_info created from the BFD entries and the list of
existing architectures. That list is first checked, using gdbarch_list_lookup_by_info to see
if there is already an architecture defined suitable for the given struct gdbarch_info and if
so it is returned.

Otherwise a new struct gdbarch is created. For that the target dependencies are saved in an
OpenRISC 1000 specific struct gdbarch_tdep, defined in orlk-tdep.h.

struct gdbarch_tdep

{
unsigned int num_matchpoints;
unsigned int num_gpr_regs;
int bytes_per_word;
int bytes_per_address;
s

This is information beyond that which is held in the struct gdbarch. By using this structure,
the GDB implementation for OpenRISC 1000 can be made flexible enough to deal with both
32 and 64-bit implementations and with variable numbers of registers and matchpoints.

Caution
@ Although this flexibility is built in to the code, the current implementation has only
been tested with 32-bit OpenRISC 32 registers.

The new architecture is then created by gdbarch_alloc, passing in the struct gdbarch_info
and the struct gdbarch_tdep. The struct gdbarch is populated using the various
set_gdbarch_ functions, and OpenRISC 1000 Frame sniffers are associated with the architec-
ture.

When creating a new struct gdbarch a function must be provided to dump the target specific
definitions in struct gdbarch_tdep to a file. This is provided in orlk_dump_tdep. It is passed
a pointer to the struct gdbarch and a file handle and simply writes out the fields in the
struct gdbarch_tdep with suitable explanatory text.

4.2.2. OpenRISC 1000 Hardware Data Representation
The first entries in struct gdbarch initialize the size and format of all the standard data types.

37 Copyright © 2008 Embecosm Limited

ECOSM

set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_long bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
set_gdbarch_char_signed (gdbarch, 1);

4.2.3. Information Functions for the OpenRISC 1000 Architecture
These struct gdbarch functions provide information about the architecture.

set_gdbarch_return_value (gdbarch, orilk_return_value);
set_gdbarch_breakpoint_from_pc (gdbarch, orik_breakpoint_from_pc);
set_gdbarch_single_step_through_delay
(gdbarch, orilk_single_step_through_delay);
set_gdbarch_have_nonsteppable_watchpoint
(gdbarch, 1);
switch (gdbarch_byte_order (gdbarch))
{
case BFD_ENDIAN_BIG:
set_gdbarch_print_insn (gdbarch, print_insn_big or32);
break;

case BFD_ENDIAN_LITTLE:
set_gdbarch_print_insn (gdbarch, print_insn_little_or32);
break;

case BFD_ENDIAN_UNKNOWN:
error ("orlk_gdbarch_init: Unknown endianism");
break;

}

. orlk_return_value. This function tells GDB how a value of a particular type would be
returned by the ABI. Structures/unions and large scalars (> 4 bytes) are placed in mem-
ory and returned by reference (RETURN_VALUE_ABI_RETURNS_ADDRESS. Smaller scalars are

returned in GPR 11 (RETURN_VALUE_REGISTER_CONVENTION).

. orlk_breakpoint_from_pc returns the breakpoint function to be used at a given program
counter address. Since all OpenRISC 1000 instructions are the same size, this function

always returns the same value, the instruction sequence for a 1.trap instruction.

. orlk_single_step_through_delay. This function is used to determine if a single stepped
instruction is actually executing a delay slot. This is the case if the previously executed

instruction was a branch or jump.

38 Copyright © 2008 Embecosm Limited

ECOSM

. print_insn_big_or32 and print_insn_little_or32. There are two variants of the dis-
assembler, depending on the endianism. The disassembler is discussed in more detail
in Section 4.4.

4.2.4. OpenRISC 1000 Register Architecture

The register architecture is defined by two groups of struct gdbarch functions and fields. The
first group specifies the number of registers (both raw and pseudo) and the register numbers
of some "special" registers.

set_gdbarch_pseudo_register_read (gdbarch, orilk pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, orilk_pseudo_register_write);

set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM) ;
set_gdbarch_pc_regnum (gdbarch, OR1K_PC_REGNUM) ;
set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM) ;

set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);

The second group of functions provides information about registers.

set_gdbarch_register_name (gdbarch, orilk_register_name);
set_gdbarch_register_type (gdbarch, orilk_register_type);
set_gdbarch_print_registers_info (gdbarch, orilk_registers_info);
set_gdbarch_register_reggroup p (gdbarch, orilk_register_reggroup_p);

The representation of the raw registers (see Section 2.3.5.3) is: registers 0-31 are the corre-
sponding GPRs, register 32 is the previous program counter, 33 is the next program counter
(often just called the program counter) and register 34 is the supervision register. For conve-
nience, constants are defined in the header, orlk_tdep.h, for all the special registers.

#define OR1K_SP_REGNUM 1
#define OR1K_FP_REGNUM 2
#define OR1K_FIRST_ARG_REGNUM 3
#define OR1K_LAST_ARG_REGNUM 8
#define OR1K_LR_REGNUM 9
#define OR1K_RV_REGNUM 11
#define OR1K_PC_REGNUM (OR1K_MAX_GPR_REGS + 0)
#define OR1K_SR_REGNUM (OR1K_MAX_GPR_REGS + 1)

In this implementation there are no pseudo-registers. A set could have been provided to rep-
resent the GPRs in floating point format (for use with the floating point instructions), but this
has not been implemented. Constants are defined for the various totals

#define OR1K_MAX_GPR_REGS 32

#define OR1K_NUM_PSEUDO_REGS ©

#define OR1K_NUM_REGS (OR1K_MAX_GPR_REGS + 3)

#define OR1K_TOTAL_NUM_REGS (OR1K_NUM_REGS + OR1K_NUM_PSEUDO_REGS)

39 Copyright © 2008 Embecosm Limited

ECOSM

Caution

@ These totals are currently hard-coded constants. They should really draw on the
data in the struct gdbarch_tdep, providing support for architectures which have
less than the full complement of 32 registers. This functionality will be provided
in a future implementation.

One consequence of providing no pseudo-registers is that the frame pointer variable, $fp in
GDB will not have its correct value. The provision of this register as an intrinsic part of GDB is
no longer supported. If it is wanted then it should be defined as a register or pseudo-register.

However if there is no register with this name, GDB will use either the value of the
deprecated_fp_regnum value in struct gdbarch or the current frame base, as reported by the
frame base sniffer.

For the time being, the deprecated_fp_regnum is set. However the longer term plan will be to
represent the frame-pointer as a pseudo-register, taking the value of GPR 2.

The register architecture is mostly a matter of setting the values required in struct gdbarch.
However two functions, orlk_pseudo_register_read and orlk_pseudo_register_write are de-
fined to provide access to any pseudo-register. These functions are defined to provide hooks
for the future, but in the absence of any pseudo-registers they do nothing.

There are set of functions which yield information about the name and type of registers and
which provide the output for the GDB info registers command.

. orlk_register_name. This is a simple table lookup to yield the register name from its
number.

. orlk_register_type. This function must return the type as a struct type. This GDB

data structure contains detailed information about each type and its relationship to
other types.
For the purposes of this function, a number of standard types are predefined, with
utility functions to construct other types from them. For most registers the predefined
builtin_type_int32 is suitable. The stack pointer and frame pointer are pointers to ar-
bitrary data, so the equivalent of void * is required. This is constructed by applying
the function lookup_pointer_type to the predefined builtin_type_void. The program
counter is a pointer to code, so the equivalent of a pointer to a void function is appro-
priate. This is constructed by applying lookup_pointer_type and lookup_function_type
to builtin_type.

. orlk_register_info. This function is used by the info registers command to display
information about one or more registers.
This function is not really mneeded. It is just a wrapper for
default_print_registers_info, which is the default setting for this function anyway.

. orlk_register_reggroup_p. This predicate function returns 1 (true) if a given register is

in a particular group. This is used by the command info registers when registers in a
particular category are requested.
The function as implemented is little different from the default function
(default_register_reggroup_p), which is called for any unknown cases anyway. How-
ever it does make use of the target dependent data (struct gdbarch_tdep), thus provid-
ing flexibility for different OpenRISC 1000 architectures.

4.2.5. OpenRISC 1000 Frame Handling

The OpenRISC 1000 frame structure is described in its ABI [8]. Some of the detail is slightly
different in current OpenRISC implementations—this is described in Section 3.3.

40 Copyright © 2008 Embecosm Limited

ECOSM

The key to frame handling is understanding the prologue (and possibly epilogue) in each func-
tion which is responsible for initializing the stack frame. For the OpenRISC 1000, GPR 1 is
used as the stack pointer, GPR 2 as the frame pointer and GPR 9 as the return address. The
prologue sequence is:

l.addi ri,ri,-frame_size

1l.sw save_loc(rl),r2
l.addi r2,ri1,frame_size
1.sw save_loc-4(rl),r9

1l.sw x(rl),ry

The OpenRISC 1000 stack frame accommodates any local (automatic) variables and tempo-
rary values, then the return address, then the old frame pointer and finally any stack based
arguments to functions called by this function. This last rule means that the return address
and old frame pointer are not necessarily at the end of the stack frame - enough space will
be left to build up any arguments for called functions that must go on the stack. Figure 4.1
shows how the stack looks at the end of the prologue.

| Stack arguments _ | FP+4
to this function FP
| Local variables _| 774
| and temporary | FP-8
values FP-12
Stack | Callee saved | SP+save_loc+8
Frame registers SP+save_loc+4
Previous FP SP+save_loc
Return Address SP+save_loc-4
| Stack arguments _|
L to called functions SP

Figure 4.1. The OpenRISC 1000 stack frame at the end of the prologue

Not all fields are always present. The function need not save its return address to stack, and
there may be no callee-saved registers (i.e. GPRs 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30)
which require saving. Leaf functions are not required to set up a new stack frame at all.

The epilogue is the inverse. Callee-saved registers are restored, the return address placed in
GPR 9 and the stack and frame pointers restored before jumping to the address in GPR 9.

1.lwz ry,x(rl)

1l.1lwz r9,save_loc-4(rl)
1.1lwz r2,save_loc(rl)
1.jr r9

l.addi ri,ri,frame_size

Only those parts of the epilogue which correspond to the prologue need actually appear. The
OpenRISC 1000 has a delay slot after branch instructions, so for efficiency the stack restora-
tion can be placed after the 1.jr instruction.

4.2.5.1. OpenRISC 1000 Functions Analyzing Frames

A group of struct gdbarch functions and a value provide information about the current stack
and how it is being processed by the target program.

41 Copyright © 2008 Embecosm Limited

ECOSM

set_gdbarch_skip_prologue (gdbarch, orilk_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_frame_align (gdbarch, orilk_frame_align);

set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);

orlk_skip_prologue. This function returns the end of the function prologue, if the pro-
gram counter is currently in a function prologue.

The initial approach is to use the DWARF2 symbol-and-line (SAL) information to identify
the start of the function (find_pc_partial_function and hence the end of the prologue
(skip_prologue_using_sal).

If this information is not available, orlk_skip_prologue reuses the helper functions
from the frame sniffer function, orlk_frame_unwind_cache (see Section 4.2.5.5) to step
through code that appears to be function prologue.

core_addr_lessthan. This standard function returns 1 (true) if its first argument is a
lower address than its second argument. It provides the functionality required by the
struct gdbarch inner_than function for architectures like OpenRISC 1000, which have
falling stack frames.

orlk_frame_align. This function takes a stack pointer and returns a value (expanding
the frame) which meets the stack alignment requirements of the ABI. Since the Open-
RISC 1000 ABI uses a falling stack, this uses the built-in function, align_down. The
alignment is specified in the constant OR1K_STACK_ALIGN defined in orlk-tdep.h.
” Note
\/ The OpenRISC 1000 ABI specifies that frames should be double-word aligned.
However the version of GCC in the current OpenRISC tool chain imple-
ments single-word alignment. So the current GDB implementation specifies
OR1K_STACK_ALIGN to be 4, not 8.

OR1K_FRAME_RED_ZONE_SIZE. The OpenRISC 1000 reserves the 2,560 bytes below the
stack pointer for use by exception handlers and frameless functions. This is known
as a red zone (an AMD term). This constant is recorded in the struct gdbarch
frame_red_zone_size field. Any dummy stack frames (see Section 4.2.5.3) will be placed
after this point.

4.2.5.2. OpenRISC 1000 Functions for Accessing Frame Data

set_gdbarch_unwind_pc (gdbarch, orik_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, orik_unwind_sp);

There are only two functions required here, orlk_unwind_pc and orilk_unwind_sp. Given a
pointer to the NEXT frame, these functions return the value of respectively the program counter
and stack pointer in THIS frame.

Since the OpenRISC architecture defines standard frame sniffers, and both these reg-
isters are raw registers, the functions can be implemented very simply by a call to
frame_unwind_register_unsigned.

4.2.5.3. OpenRISC 1000 Functions to Create Dummy Stack Frames
Two struct gdbarch provide support for calling code in the target inferior.

42

Copyright © 2008 Embecosm Limited

ECOSM

set_gdbarch_push_dummy_call (gdbarch, orik_push_dummy_call);
set_gdbarch_unwind_dummy_id (gdbarch, orik_unwind_dummy_id);
. orlk_push_dummy_call. This function creates a dummy stack frame, so that GDB can

evaluate a function within the target code (for example in a call command). The input
arguments include all the parameters for the call, including the return address and an
address where a structure should be returned.

The return address for the function is always breakpointed (so GDB can trap the re-
turn). This return address is written into the link register (in the register cache) using
regcache_cooked_write_unsigned).

If the function is to return a structure, the address where the structure is to go is passed
as a first argument, in GPR 3.

The next arguments are passed in the remaining argument registers (up to GPR 8).
Structures are passed by reference to their locating in memory. For 32-bit architectures
passing 64-bit arguments, a pair of registers (3 and 4, 5 and 6 or 7 and 8) are used.

Any remaining arguments must be pushed on the end of the stack. There is a difficulty
here, since pushing each argument may leave the stack misaligned (OpenRISC 1000
specifies double-word alignment). So the code first works out the space required, then
adjusts the resulting stack pointer to the correct alignment. The arguments can then be
written to the stack in the correct location.

. orlk_unwind_dummy_id. This is the inverse of orlk_push_dummy_call. Given a pointer to
the NEXT stack frame (which will be the frame of the dummy call), it returns the frame
ID (that is the stack pointer and function entry point address) of THIS frame.
This is not completely trivial. For a dummy frame, the NEXT frame information about
THIS frame is not necessarily complete, so a simple call to frame_unwind_id recurs-
es back to this function ad infinitum. Instead the frame information is built by un-
wind the stack pointer and program counter and attempting to use DWARF2 sym-
bol-and-line (SAL) information to find the start of the function from the PC with
find_pc_partial_function. If that information is not available, the program counter is
used as a proxy for the function start address.

4.2.5.4. OpenRISC 1000 Frame Sniffers

The preceding functions all have a 1:1 relationship with struct gdbarch. However for stack
analysis (or "sniffing") more than one approach may be appropriate, so a list of functions is
maintained.

The low level stack analysis functions are set by frame_unwind_append_sniffer. The Open-
RISC 1000 has its own sniffers for finding the ID of a frame and getting the value of a register
on the frame specified by orlk_frame_sniffer. For all other sniffing functions, the default
DWARF2 frame sniffer is used, dwarf2_frame_sniffer.

The high level sniffer finds the base of the stack frame. OpenRISC defines its own base sniffer,
orlk_frame_base as default. It provides all the functionality needed, so can be used as the
default base sniffer, set using frame_base_set_default. The frame base is a structure, with
entries pointing to the corresponding frame sniffer and functions to give the base address of
the frame, the arguments on the frame and the local variables on the frame. Since these are
all the same for the OpenRISC 1000, the same function, orlk_frame_base_address is used
for all three.

43 Copyright © 2008 Embecosm Limited

ECOSM

4.2.5.5. OpenRISC 1000 Frame Base Sniffer

The same function, orlk_frame_base_address is used to provide all three base functions: for
the frame itself, the local variables and any arguments. In the OpenRISC 1000 these are all
the same value.

orlk_frame_base.unwind
orlk_frame_base.this_base
orlk_frame_base.this_locals = orlk_frame_base_address;
orlk_frame_base.this_args orlk_frame_base_address;
frame_base_set_default (gdbarch, &orik_frame_base);

orlk_frame_sniffer (NULL);
orlk_frame_base_address;

The specification of this function requires the end of the stack, i.e. the stack pointer.
Rather confusingly the function is also used to determine the value of the $fp variable if
deprecated_fp_regnum has not been set and there is no register with the name "fp". However,
as noted earlier, GDB is moving away from an intrinsic understanding of frame pointers. For
the OpenRISC 1000, deprecated_fp_regnum is currently defined, although in time a pseudo
register will be defined, with the name of fp and mapping to GPR 2.

Like all the frame sniffers, this function is passed the address of the NEXT frame, and requires
the value for THIS frame, so the value of the stack pointer is unwound from the stack by using
the generic register unwinder, frame_unwind_register_unsigned.

4.2.5.6. OpenRISC 1000 Low Level Frame Sniffers

The function orlk_frame_sniffer returns a pointer to struct frame_unwind with entries for
the functions defined by this sniffer. For the OpenRISC 1000, this defines a custom function to
construct the frame ID of THIS frame given a pointer to the NEXT frame (orlk_frame_this_id)
and a custom function to give the value of a register in THIS frame given a pointer to the NEXT
frame (orlk_frame_prev_register).

. orlk_frame_this_id. This function's inputs are a pointer to the NEXT frame and the
prologue cache (if any exists) for THIS frame. It uses the main OpenRISC 1000 frame
analyzer, orlk_frame_unwind_cache to generate the prologue cache if it does not exist
(see below).

From the cached data, the function returns the frame ID This comprises two values, the
stack pointer for this frame and the address of the code (typically the entry point) for
the function using this stack frame

R Note

\/ Strictly speaking frame IDs can have a third value, the special address for
use with architectures which have more complex frame structures. However
this is rarely used.

The result is returned in a struct frame_id passed by reference as a third argument.
Since the implementation uses the built in struct trad_frame_cache for its register
cache, the code can use the trad_frame_get_id function to decode the frame ID from
the cache.

. orlk_frame_prev_register. This function's inputs are a pointer to the NEXT frame,
the prologue cache (if any exists) for THIS frame and a register number. It uses the
main OpenRISC 1000 frame analyzer, orlk_frame_unwind_cache to generate the pro-
logue cache if it does not exist (see below).

From the cached data, a flag is returned indicating if the register has been optimized out
(this is never the case), what sort of 1-value the register represents (a register, memory

44 Copyright © 2008 Embecosm Limited

ECOSM

or not an l-value), the address where it is saved in memory (if it is saved in memory), the
number of a different register which holds the value of this register (if that is the case) and
if a buffer is provided the actual value as obtained from memory or the register cache.

Since the implementation uses the built in struct trad_frame_cache for its register
cache, the code can use the trad_frame_get_register function to decode all this infor-
mation from the cache.

The OpenRISC 1000 low level sniffers rely on orlk_frame_unwind_cache. This is the heart of
the sniffer. It must determine the frame ID for THIS frame given a pointer to the NEXT frame
and then the information in THIS frame about the values of registers in the PREVIOUS frame.

All this data is returned in a prologue cache (see Section 2.3.6), a reference to which is passed
as an argument. If the cache already exists for THIS frame it can be returned immediately
as the result.

If the cache does not yet exist, it is allocated (using trad_frame_cache_zalloc). The first step
is to unwind the start address of this function from the NEXT frame. The DWARF2 information
in the object file can be used to find the end of the prologue (using skip_prologue_using_sal).

The code then works through each instruction of the prologue to find the data required.

Caution

@ The analysis must only consider prologue instructions that have actually been ex-
ecuted. It is quite possible the program counter is in the prologue code, and only
instructions that have actually been executed should be analyzed.

The stack pointer and program counter are found by simply unwinding the NEXT frame.
The stack pointer is the base of THIS frame, and is added to the cache data using
trad_frame_set_this_base.

end_iaddr marks the end of the code we should analyze. Only instructions with addresses less
than this will be considered.

The 1.addi instruction should be first and its immediate constant field is the size of the stack.
If it is missing, then this is a frameless call to a function. If the program counter is right at
the start of the function, before the stack and frame pointers are set up, then it will also look
like a frameless function.

Unless it is subsequently found to have been saved on the stack, the program counter of the
PREVIOUS frame is the link register of THIS frame and can be recorded in the register cache.
o o
It is essential to save the register data using the correct function.

| = |

- . Use trad_frame_set_reg_realreg when a register in the PREVIOUS frame is
obtained from a register in THIS frame.

. Use trad_frame_set_reg_addr when a register in the PREVIOUS frame is ob-
tained from an address in THIS frame.

. Use trad_frame_set_reg_value when a register in the PREVIOUS frame is a
particular value in THIS frame.

The default entry for each register is that its value in the PREVIOUS frame is ob-
tained from the same register in THIS frame.

For a frameless call, there is no more information to be found, so the rest of the code analysis
only applies if the frame size was non-zero.

45 Copyright © 2008 Embecosm Limited

ECOSM

The second instruction in the prologue is where the frame pointer of the PREVIOUS frame
is saved. It is an error if this is missing. The address where it is saved (the stack point-
er of THIS frame plus the offset in the 1l.sw instruction) is saved in the cache using
trad_frame_set_reg_addr.

The third instruction should be an 1.addi instruction which sets the frame pointer. The frame
size set in this instruction should match the frame size set in the first instruction. Once this
has been set up, the frame pointer can be used to yield the stack pointer of the previous frame.
This information is recorded in the register cache.

The fourth instruction is optional and saves the return address to the stack. If this instruction
is found, the entry in the register cache for the program counter in the PREVIOUS frame must
be changed using trad_frame_set_reg_addr to indicate it is found at an address in this frame.

All the subsequent instructions in the prolong should be saves of callee-savable registers.
These are checked for until the code address has reached the end of the prologue. For each
instruction that is found, the save location of the register is recorded in the cache using
trad_frame_set_reg_addr.

The detailed analysis in orlk_frame_unwind_cache uses a series of helper func-
tions: orlk_frame_size, orlk_frame_fp_loc, orlk_frame_size_check, orlk_link_address and
orlk_get_saved_reg. These helper routines check each of the instructions in the prologue. By
breaking out this code into separate functions, they can be reused by orlk_skip_prologue.

4.3. OpenRISC 1000 JTAG Remote Target Specification

The code for the remote target specification for the OpenRISC Remote JTAG protocol is found
in the gdb sub-directory. remote-orilk.c contains the target definition. The low-level interface
is found in orlk-jtag.c with a shared header in orlk-jtagh.

The low-level interface is abstracted to a set of OpenRISC 1000 specific functions relating to
the behavior of the target. Two implementations are provided (in orlk-jtag.c), one for targets
connected directly through the host's parallel port, and one for targets connected over TCP/
IP using the OpenRISC 1000 Remote JTAG Protocol.

void orlk_jtag_init (char *args);
void orlk_jtag_close ();
ULONGEST orilk_jtag read_spr (unsigned int sprnum);
void orlk_jtag_write_spr (unsigned int sprnum,
ULONGEST data);
int orlk_jtag_read_mem (CORE_ADDR addr,
gdb_byte *bdata,
int len);
int orlk_jtag_write_mem (CORE_ADDR addr,
const gdb_byte *bdata,
int len);
void orlk_jtag_stall ();
void orlk_jtag _unstall ();
void orlk_jtag wait (int fast);

The choice of which implementation to use is determined by the argument to orlk_jtag_init.

. orlk_jtag_init and orlk_jtag_close. Initialize and close a connection to the target.
orlk_jtag_init is passed an argument string with the address of the target (either a

46 Copyright © 2008 Embecosm Limited

ECOSM

local device or a remote TCP/IP port address). An optional second argument, reset can
be provided to indicate the target should be reset once connected.

. orlk_jtag_read_spr and orlk_jtag_write_spr. Read or write a special purpose register.
. orlk_jtag_read_mem and orlk_jtag_write_mem. Read or write a block of memory.

. orlk_jtag_stall and orlk_jtag_unstall. Stall or unstall the target.

. orlk_jtag_wait. Wait for the target to stall.

The binaries for the remote target interface (remote-orlk.o and orilk-jtag.o) are added to
the configure.tgt file for the OpenRISC targets. As noted in Section 4.2, this only specifies
binaries, so dependencies on headers cannot be captured. To do this requires editing the
Makefile.in.

@ Tip

As a shortcut for a simple port, editing Makefile.in can be omitted. Instead, touch
= the target specific C source files before calling make to ensure they are rebuilt.

4.3.1. Creating struct target_ops for OpenRISC 1000

The remote target is created by defining the function _initialize_remote_orik. A new
struct target_ops, orlk_jtag target is populated and added as a target by calling
add_target.

The majority of the target operations are generic to OpenRISC 1000, and independent of the
actual low level interface. This is achieved by abstracting the low level interface through the
interface functions described in Section 4.3.

Having established all the target functions, the target is added by calling add_target

When a target is selected (with the GDB target jtag command), the set of target operations
chosen for use with the OpenRISC 1000 architecture will be referred to by the global variable,
orlk_target, defined in orlk-tdep.c.

o Note

\\/ GDB has its own global variable, current_target, which refers to the current set
of target operations. However this is not sufficient, since even though a target may
be connected via the OpenRISC remote interface, it may not be the current target.
The use of strata by GDB means there could possibly be another target which is
active at the same time.

Much of the operation of the target interface involves manipulating the debug SPRs. Rather
than continually writing them out to the target, a cache of their values is maintained in
orlk_dbgcache, which is flushed prior to any operation that will unstall the target (thus caus-
ing it to execute).

4.3.2. OpenRISC 1000 Target Functions and Variables Providing Information
A group of variables and functions give the name of the interface and different types of infor-
mation.

. to_shortname. This is the name of the target for use when connecting in GDB. For the
OpenRISC 1000, it is "jtag", so connection in GDB will be established by using the
command target jtag

47 Copyright © 2008 Embecosm Limited

ECOSM

to_longname. A brief description of the command for use by the GDB info target com-
mand.

to_doc. The help text for this target. The first sentence is used for general help about
all targets, the full text for help specifically about this target. The text explains how to
connect both directly and over TCP/IP.

orlk_files_info. This function provides the initial information for info target. For the
OpenRISC 1000 it provides the name of the program being run on the target, if known.

OpenRISC remote targets are always executable, with full access to memory, stack, registers
etc once the connection is established. A set of variables in struct target_ops for Open-
RISC 1000 records this.

to_stratum. Since the OpenRISC 1000 target can execute code, this field is set to
process_stratum.

to_has_all_memory, to_has_memory, to_has_stack and to_has_registers. Once the
OpenRISC 1000 target is connected, it has access to all its memory, a stack and regis-
ters, so all these fields are set to 1 (true).

to_has_execution. When the connection is initially established, the OpenRISC 1000
processor will be stalled, so is not actually executing. So this field is initialized to O (false).

to_have_steppable_watchpoint and to_have_continuable_watchpoint. These flags in-
dicate whether the target can step through a watchpoint immediately after it has been
executed, or if the watchpoint can be immediate continued without having any effect.
If the OpenRISC 1000 triggers a hardware watchpoint, the instruction affected will not
have completed execution, so must be re-executed (the code cannot continue). Further-
more the watchpoint must be temporarily disabled while re-executing, or it will trigger
again (it is not steppable). Thus both these flags are set to O (false).

4.3.3. OpenRISC 1000 Target Functions Controlling the Connection

These functions control the connection to the target. For remote targets this involves setting
up and closing down a TCP/IP socket link to the server driving the hardware. For local targets
it involves opening and closing the device.

48

orlk_open. This is passed the arguments to the target jtag command and establishes
the connection to the target. The arguments are the address of the target (either a local
device, or a TCP/IP host/port specification) and an optional second argument reset
indicating the target should be reset on connection.

Any existing connections are tidied up by target_preopen and any instances of this
target are removed from the target stack by unpush_target.

Connection is then established through the low level interface routine, orlk_jtag_init,
which resets the target if requested.

With the connection established, the target's Unit Present SPR is checked to verify it has
a debug unit available. Data about the number of GPRs and matchpoints is read from
the CPU Configuration SPR and used to update struct gdbarch_tdep.

The target processor is then stalled, to prevent further execution, with a 1000ps wait
to allow the stall to complete.

The debug cache is cleared, and the Debug Stop SPR set to trigger the JTAG interface on
trap exceptions (which are used for debug breakpoints, watchpoints and single stepping).
The cache will be written out to the SPRs before execution recommences.

Copyright © 2008 Embecosm Limited

ECOSM

Having established a connection, the target is pushed on to the stack. It is marked
running, which sets all the flags associated with a running process and updates the
choice of current target (which depending on the stratum could be this target). How-
ever, the OpenRISC connection is established with the target processor stalled, so the
to_has_execution flag is cleared by setting the macro target_has_execution to O. It will
be set when orlk_resume unstalls the target.

As a matter of good housekeeping, any shared library symbols are cleared using
no_shared_libraries.

GDB identifies all inferior executables by their process and thread ID. This port of the
OpenRISC 1000 is for bare metal debugging, so there is no concept of different processes
that may be executing. Consequently the null_ptid is used as the process/thread ID
for the target. This is set in the GDB global variable inferior_pid.

. Note
\\ It is important that the inferior process/thread ID is established at this early
stage, so that the target can always be uniquely identified.

Finally the generic start_remote is called to set up the new target ready for execution. It
is possible this could fail, so the call is wrapped in a function, orlk_start_remote, which
has the correct prototype to run using catch_exception. If failure occurs, the target can
be popped, before the exception is thrown on to the top level.

orlk_close. This closes the connection by calling the low level interface function,
orlk_jtag_close. The target will already have been unpushed and the inferior mourned
(see Section 4.3.6), so these actions are not required.

orlk_detach. This just detaches from the target being debugged, which is achieved by
calling orlk_close.

There is no explicit function to reattach to the target, but a call to orlk_open (by giving
a target jtag command in GDB) will achieve the same effect.

4.3.4. OpenRISC 1000 Target Functions to Access Memory and Registers
These are a group of functions to access the registers and memory of the target.

49

orlk_fetch_registers. This function populates the register cache from the actual target
registers. The interface to the OpenRISC 1000 only provides for reading of memory or
SPRs. However the GPRs are mapped into the SPR space, so can be read in this way.

orlk_store_registers. This is the inverse of orlk_fetch_registers. It writes the con-
tents of the register cache back to the physical registers on the target.

orlk_prepare_to_store. GDB allows for targets which need some preparatory work be-
fore storing, so provides this function. It is not needed for the OpenRISC 1000, so just
returns.

orlk_xfer_partial. This is the generic function for reading and writing objects from
and to the target. However the only class of object which needs be supported is
read and write from memory. This is achieved through the low-level interface routines
orlk_jtag_read_mem and orlk_jtag_write_mem.

generic_load. This generic function is used as the to_load function of the target opera-
tions. There is nothing special about loading OpenRISC 1000 images. This function will
call the orlk_xfer_partial function to transfer the bytes for each section of the image.

Copyright © 2008 Embecosm Limited

ECOSM

4.3.5. OpenRISC 1000 Target Functions to Handle Breakpoints and Watchpoints

The OpenRISC 1000 can support hardware breakpoints and watchpoints, if matchpoints are
free in the debug unit.

v

~

50

Note

Beware of confusion over the term "watchpoint". It is used in GDB to mean a loca-
tion, being watched for read or write activity. These may be implemented in hard-
ware or software.

If implemented in hardware, they may make use of the OpenRISC 1000 Debug
Unit mechanism, which also uses the term watchpoint. This document uses the
terms "GDB watchpoint" and "OpenRISC 1000 watchpoint" where there is any risk
of confusion.

orlk_set_breakpoint. This is the underlying OpenRISC 1000 function which sets a
hardware breakpoint if one is available. This is controlled through the Debug Value Reg-
ister and Debug Control Register. This function is used by the target operation functions
orlk_insert_breakpoint and orlk_insert_hw_breakpoint.

The first free hardware matchpoint is found by searching through the Debug
Control Registers for a register without its DVR/DCR Preset (DP) flag set using
orlk_first_free_matchpoint.

The Debug Value Register is set to the address of the breakpoint and the Debug Control
Register to trigger when the unsigned effective address of the fetched instruction is equal
to the Debug Value Register. The corresponding OpenRISC 1000 watchpoint is marked
as unchained in Debug Mode Register 1 and set to trigger a trap exception in Debug
Mode Register 2.

orlk_clear_breakpoint. This is the counterpart to orlk_set_breakpoint. It is called by
the target operation functions remove_breakpoint and remove_hw_breakpoint.

The Debug Control Registers are searched for an entry matching the given address (using
orlk_matchpoint_equal). If a register is found, its DVR/DCR Present flag is cleared, and
the matchpoint marked unused in Debug Mode Register 2.

orlk_insert_breakpoint. This function inserts a breakpoint. It tries to insert
a hardware breakpoint wusing orlk_set_breakpoint. If this fails, the generic
memory_insert_breakpoint is used to set a software breakpoint.

orlk_remove_breakpoint. This is the counterpart to orlk_insert_breakpoint. It tries to
clear a hardware breakpoint, and if that fails tries to clear a software breakpoint using
the generic memory_remove_breakpoint.

orlk_insert_hw_breakpoint and orlk_remove_hw_breakpoint. These functions are sim-
ilar to orlk_insert_breakpoint and orilk_remove_breakpoint. However if a hardware
breakpoint is not available, they do not attempt to use a software (memory) breakpoint
instead.

orlk_insert_watchpoint. This function attempts to insert a GDB hardware watchpoint.
For this it requires a pair of OpenRISC 1000 watchpoints chained together. The first
will check for a memory access greater than or equal to the start address of interest.
The second will check for a memory access less than or equal to the end address of
interest. If both criteria are met. The access type can be the load effective address (for
GDB rwatch watchpoints), store effective address (for GDB watch watchpoints) or both
(for GDB awatch watchpoints).

The pair of OpenRISC 1000 watchpoints must be adjacent (so they can be chained to-
gether using Debug Mode Register 1), but it is possible that successive breakpoints

Copyright © 2008 Embecosm Limited

ECOSM

have fragmented the use of OpenRISC 1000 watchpoints. orlk_watchpoint_gc is used
to shuffle up all the existing OpenRISC 1000 watchpoints which can be moved, to find
a pair if possible.

orlk_remove_watchpoint. This is the counterpart of orlk_insert_watchpoint. It
searches for an adjacent pair of OpenRISC 1000 watchpoints that match using
orlk_matchpoint_equal. If found both are marked unused in their Debug Control Reg-
ister and cleared from triggering in Debug Mode Register 2.

orlk_stopped_by watchpoint and orlk_stopped_data_address. These functions are
called to find out about GDB watchpoints which may have triggered. Both make
use of the utility function, orilk_stopped_watchpoint_info, which determines if a
GDB watchpoint was triggered, if so which watchpoint and for what address.
orlk_stopped_watchpoint just returns a Boolean to indicate if a watchpoint was trig-
gered. orlk_stopped_data_address is called once for each watchpoint that has triggered.
It returns the address that triggered the watchpoint and must also clear the watchpoint
(in Debug Mode Register 2).

4.3.6. OpenRISC 1000 Target Functions to Control Execution

When the run command is used to start execution with GDB it needs to establish the exe-
cutable on the inferior, and then start execution. This is done using the to_create_inferior
and to_resume functions of the target respectively.

Once execution has started, GDB waits until the target to_wait function returns control.

In addition the target provides operations to stop execution.

51

orlk_resume. This is the function which causes the target program to run. It is called in
response to the run, step, stepi, next and nexti instructions.

The behavior of this function is far simpler than its counterpart in GDB 5.3, which
required complex logic to re-execute instructions after a breakpoint or watchpoint.
GDB 6.8 will sort out all the issues of re-execution after a breakpoint or watchpoint has
been encountered (see orlk_wait below for more on this).

The function clears the Debug Reason Register, clears any watchpoint status bits in
Debug Mode Register 2 and then commits the debug registers.

If the caller has requested single stepping, this is set using Debug Mode Register 1,
otherwise this is cleared.

Finally the target can be marked as executing (the first time orlk_resume is called it
will not be marked as executing), the debug registers written out, and the processor
unstalled.

orlk_wait . This function waits for the target to stall, and analyzes the cause. Informa-
tion about why the target stalled is returned to the caller via the status argument. The
function returns the process/thread ID of the process which stalled, although for the
OpenRISC 1000 this will always be the same value.

While waiting for the target to stall (using orlk_jtag_wait), a signal handler is installed,
so the user can interrupt execution with ctrl-C.

After the wait returns, all register and frame caches are invalid, These are cleared by
calling registers_changed (which in turn clears the frame caches).

When the processor stalls, the Debug Reason Register (a SPR) shows the reason for the
stall. This will be due to any exception set in the Debug Stop Register (currently only

Copyright © 2008 Embecosm Limited

52

ECOSM

trap), due to a single step, due to a reset (the debugger stalls the processor on reset) or
(when the target is the architectural simulator, Orlksim) due to an exit 1.nop 1 being
executed.

In all cases the previous program counter SPR points to the instruction just executed and
the next program counter SPR to the instruction about to be executed. For watchpoints
and breakpoints, which generate a trap however the instruction at the previous program
counter will not have completed execution. As a result, when the program resumes, this
instruction should be re-executed without the breakpoint/watchpoint enabled.

GDB understands this. It is sufficient to set the program counter to the previous program
counter. GDB will realize that the instruction corresponds to a breakpoint/watchpoint
that has just been encountered, lift the breakpoint, single step past the instruction and
reimpose the breakpoint. This is achieved by a call to write_pc with the previous program
counter value.

The OpenRISC 1000 imposes a slight problem here. The standard GDB approach works
fine, except if the breakpoint was in the delay slot of a branch or jump instruction. In this
case the re-execution must be not just of the previous instruction, but the one before that
(restoring the link register as well if it was a jump-and-link instruction). Furthermore
this must only be in the case where the branch was truly the preceding instruction,
rather than the delay slot having been the target of a different branch instruction.

In the absence of a "previous previous" program counter, this restart cannot be correct
under all circumstances. For the time being, breakpoints on delay slots are not expected
to work. However it is highly unlikely a source level debugger would ever place a break-
point in a delay slot.

A more complete solution for the future would use the struct gdbarch
adjust_breakpoint_address to move any breakpoint requested for a delay slot, to insist
the breakpoint is placed on the preceding jump or branch. This would work for all but
the most unusual code, which used a delay slot as a branch target.

Having sorted out the program counter readjustment, any single step is marked as
though it were a trap. Single step does not set the trap exception, nor does it need re-
executing, but by setting the flag here, the exception will be correctly mapped to the
TARGET_SIGNAL_TRAP for return to GDB

The response is marked as a a stopped processor (TARGET_WAITKIND_STOPPED). All excep-
tions are mapped to their corresponding GDB signals. If no exception has been raised,
then the signal is set to the default, unless the instruction just executed was 1.nop 1,
which is used by the architectural simulator to indicate termination. In this case the
response is marked as TARGET_WAITKIND_EXITED, and the associate value set to the exit
return code.

The debug reason register (which is sticky) can now be cleared and the process/thread
ID returned.

orlk_stop. This stops the processor executing. To achieve this cleanly, the processor
is stalled, single step mode is set and the processor unstalled, so execution will have
stopped at the end of an instruction.

orlk_kill. This is a more dramatic termination, when orik_stop has failed to give sat-
isfaction. Communication with the target is assumed to have broken down, so the target
is then mourned, which will close the connection.

orlk_create_inferior. This sets up a program to run on the target, but does not actually
start it running. It is called in response to the GDB run command and is passed any

Copyright © 2008 Embecosm Limited

ECOSM

arguments to that command. However the OpenRISC 1000 JTAG protocol has no way
to send arguments to the target, so these are ignored.

Debugging is much easier if a local copy of the executable symbol table has been loaded
with the file command. This is checked for and a warning issued. However if it is not
present, it is perfectly acceptable to debug code on the OpenRISC 1000 target without
symbol data.

All static data structures (breakpoint lists etc) are then cleared within GDB by calling
init_wait_for_inferior.

Tip
6 If GDB for the OpenRISC 1000 is used with ddd the warning about passing
= arguments will often be triggered. This occurs when ddd is asked to run a
i program in a separate execution window, which it attempts to achieve by
creating an xterm and redirecting I/O via pseudo-TTYs to that xterm. The
redirections are arguments to the GDB run command.

GDB for OpenRISC 1000 does not support this. The run in separate window
option should be disabled with ddd.

. orlk_mourn_inferior. This is the counterpart to orilk_create_inferior, called
after execution has completed. It tidies up by calling the generic function
generic_mourn_inferior. If the target is still shown as having execution, it is marked as
exited, which will cause the selection of a new current target.

4.3.7. OpenRISC 1000 Target Functions to Execute Commands

The OpenRISC 1000 target does not really have a way to execute commands. However imple-
menting SPR access as remote commands provides a mechanism for access, which is inde-
pendent of the target access protocol. In particular the GDB architecture need know nothing
about the actual remote protocol used.

SPR access is implemented as though the target were able to run two commands, readspr to get
a value from a SPR and writespr to set a value in a SPR. Each takes a first argument, specified
in hexadecimal, which is the SPR number. writespr takes a second argument, specified in
hexadecimal, which is the value to be written. readspr returns the value read as a number
in hexadecimal.

When access is needed to the SPRs it is achieved by passing one of these commands as argu-
ment to the to_rcmd function of the target.

. orlk_rcmd. The command to execute (readspr or writespr) is passed as the first argu-
ment. Results of the command are written back throug the second argument, which is
a Ul independent file handle.
readspr is mapped to the corresponding call to orlk_jtag_read_spr. writespr is mapped
to the corresponding call to orlk_jtag_write_spr. In the case of an error (for example
badly formed command), the result "EQ1" is returned. If writespr is successful, "0K"
is returned as result. If readspr is successful, the value as hexadecimal is returned as
result. In all cases the result is written as a string to the Ul independent file handle
specified as second argument to the function.

4.3.8. The Low Level JTAG Interface

The interface to the OpenRISC JTAG system is found in gdb/orlk-jtag.c and gdb/orik-
jtag.h. The details are not directly relevant to porting GDB so only an overview is given here.
Full details are found in the commenting within the source code.

53 Copyright © 2008 Embecosm Limited

ECOSM

The interface is layered, to maximize use. In particular much of the functionality is the same
whether the target is connected remotely over TCP/IP or directly via a JP1 header connected
to the parallel port.

. The highest level is the public function interface, which operate in terms of entities that
are visible in GDB: open and close the connection, read and write SPRs, read and write
memory, stall, unstall and wait for the processor. These functions always succeed and
have function prefixes orlk_jtag_.

. The next level is the abstraction provided by the OR1K JTAG protocol: read/write a JTAG
register, read/write a block of JTAG registers and select a scan chain. These functions
may encounter errors and will deal with them, but otherwise return no error result.
These are static functions (i.e. local to this file), with prefixes orik_jtag_.

. The next level is in two sets, one for use with a locally connected (JP1) JTAG and one for
a remote connection over TCP/IP corresponding to the functions in the previous layer.
These functions detect with errors and return an error code to indicate an error has
occurred. These are static functions with prefixes: jpl_ and jtr_ respectively.

. The final level comes in separate flavors for locally connected JTAG (low level routines to
drive the JP1 interface) and remote use (to build and send/receive packets over TCP/IP).
These functions detect errors and return an error code to indicate an error has occurred.
These are static function with prefixes jp1_11_ and jtr_11_ respectively.

Errors are either dealt with silently or (if fatal) via the GDB error function.

Caution
@ Few people now use the JP1 direct connection, and there is no confidence that this
code works at all!

4.4. The OpenRISC 1000 Disassembler

The OpenRISC 1000 disassembler is part of the wider binutils utility set and is found
in the opcodes sub-directory. It provides two versions of the disassembly function,
print_insn_big_or32 and print_insn_little_or32 for use with big-endian and little-endian
implementations of the architecture in or32-dis.c

The instruction decode uses a finite state automaton (FSA) in or32-opc.c. This is constructed
at start-up by the function build_automata from a table describing the instruction set. This
function is invoked from the _initialize_orilk_tdep function immediately after the Open-
RISC 1000 architecture has been defined.

The disassembler takes advantage of any symbol table information to replace branch and jump
targets by symbolic names where possible.

4.5. OpenRISC 1000 Specific Commands for GDB

Section 2.5 describes how to extend the GDB command set. For the OpenRISC 1000 architec-
ture, the info command is extended to show the value of SPRs (info spr) and a new command,
spr is added to set the value of a SPR'.

Both these commands are added in _initialize_orilk_tdep after the architecture has been
created and the disassembler automata initialized.

! There is a strong case for this being a new sub-command of the set. However the spr command was introduced in
GDB 5.0, and there is no point in replacing it now.

54 Copyright © 2008 Embecosm Limited

ECOSM

4.5.1. The info spr Command
The new sub-command for info is added using add_info

add_info ("spr", orlk_info_spr_command,
"Show the value of a special purpose register");

The functionality is provided in orlk_info_spr_command. The user can specify a group by name
or number (the value of all registers in that group is displayed), or a register name (the value
of that register is displayed) or a group name/number and register name/number (the value
of that register in the group is displayed).

The arguments are broken out from the text of the command using orlk_parse_params, which
also handles any errors in syntax or semantics. If the arguments are successfully parsed the
results are then printed out using the Ul independent function, ui_out_field_fmt.

The SPR is read using the convenience function orlk_read_spr. This converts the access to
a call of the command readspr, which can be passed to the target usings its to_rcmd target
operation (see Section 4.3.7). This will allow the SPR to be accessed in the way most appropriate
to the current target access method.

4.5.2. The spr Command

This new top level command is added, classified as a support command (class_support), using
the add_com command.

The functionality is provided in orlk_spr_command. This also uses orlk_parse_spr_params to
parse the arguments, although there is now one more (the value to set). The new value is
written into the relevant SPR and the change recorded using ui_out_field_fmt.

The SPR is written using the convenience function orlk_write_spr. This converts the access
to a call of the command writespr, which can be passed to the target usings its to_rcmd
target operation (see Section 4.3.7). This will allow the SPR to be accessed in the way most
appropriate to the current target access method.

55 Copyright © 2008 Embecosm Limited

ECOSM

Chapter 5. Summary

This application note has described in detail the steps required to port GDB to a new archi-
tecture. That process has been illustrated using the port for the OpenRISC 1000 architecture.

Suggestions for corrections or improvements are welcomed. Please contact the author at
jeremy.bennett@embecosm.com.

56 Copyright © 2008 Embecosm Limited

mailto:jeremy.bennett@embecosm.com

ECOSM

Glossary

Application Binary Interface

The low-level interface between an application program and the operating system, thus
ensuring binary compatibility between programs.

big endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a big endian architecture, the least significant byte in a data word resides at
the highest byte address (of the bytes in the word) in memory.
The alternative is little endian addressing.

See also: little endian.

Binary File Descriptor (BFD)

A package which allows applications to use the same routines to operate on object files
whatever the object file format [5]. A new object file format can be supported simply by
creating a new BFD back end and adding it to the library.

Common Object File Format (COFF)

A specification of a format for executable, object code, and shared library computer files
used on Unix systems. Now largely replaced by ELF
See also: Executable and Linkable Format (ELF).

Executable and Linkable Format (ELF)

a common standard file format for executables, object code, shared libraries, and core
dumps. It is the standard binary file format for Unix and Unix-like systems on x86, where
it has largely replaced COFF.

Formerly known as the Extensible Linking Format.

See also: Common Object File Format (COFF).

frame pointer

In stack based languages, the stack pointer typically refers to the end of the local frame.
The frame pointer is a second register, which refers to the beginning of the local frame.
Not all stack based architectures make use of a frame pointer.

See also: Stack Frame.

General Purpose Register (GPR)

In the OpenRISC 1000 architecture, one of between 16 and 32 general purpose integer
registers.

Although these registers are general purpose, some have specific roles defined by the ar-
chitecture and the ABI. GPR 0 is always O and should not be written to. GPR 1 is the stack
pointer, GPR 2 the frame pointer and GPR 9 the return address set by 1.jal (known as the
link register) and 1.jalr instructions. GPR 3 through GPR 8 are used to pass arguments
to functions, with scalar results returned in GPR 11.

See also: Application Binary Interface.

57 Copyright © 2008 Embecosm Limited

ECOSM

Joint Test Action Group (JTAG)

JTAG is the usual name used for the IEEE 1149.1 standard entitled Standard Test Access
Port and Boundary-Scan Architecture for test access ports used for testing printed circuit
boards and chips using boundary scan.

This standard allows external reading of state within the board or chip. It is thus a natural
mechanism for debuggers to connect to embedded systems.

little endian

A description of the relationship between byte and word addressing on a computer archi-
tecture. In a little endian architecture, the least significant byte in a data word resides at
the lowest byte address (of the bytes in the word) in memory.

The alternative is big endian addressing.

See also: big endian.

Memory Management Unit (MMU)

A hardware component which maps virtual address references to physical memory ad-
dresses via a page lookup table. An exception handler may be required to bring non-exis-
tent memory pages into physical memory from backing storage when accessed.

On a Harvard architecture (i.e. with separate logical instruction and data address spaces),
two MMUs are typically needed.

Real Time Executive for Multiprocessor Systems (RTEMS)

An operating system for real-time embedded systems offering a POSIX interface. It offers
no concept of processes or memory management.

Special Purpose Register (GPR)

In the OpenRISC 1000 architecture, one of up to 65536 registers controlling all aspects of
the processor. The registers are arranged in groups of 2048 registers. The present archi-
tecture defines 12 groups in total.

In general each group controls one component of the processor. Thus there is a group to
control the DMMU, the IMMU the data and instruction caches and the debug unit. Group
0 is the system group and includes all the system configuration registers, the next and
previous program counters, supervision register and saved exception registers.

stack frame

In procedural languages, a dynamic data structure used to hold the values of local vari-
ables in a procedure at a particular point of execution.

Typically successive stack frames are placed next to each other in a linear data area. The
last address of the current stack frame is pointed to by a register, known as the stack
pointer. It will be the first address of the next stack pointer.

See also: frame pointer.

System on Chip (SoC)

58

A silicon chip which includes one or more processor cores.

Copyright © 2008 Embecosm Limited

ECOSM

References

[1] Embecosm Application Note 2. The OpenCores OpenRISC 1000 Simulator and Tool Chain:
Installation Guide. Issue 3. Embecosm Limited, November 2008.

[2] Embecosm Application Note 4. Howto: GDB Remote Serial Protocol: Writing a RSP Server.
Embecosm Limited, November 2008.

[3] Debugging with GDB: The GNU Source-Level Debugger, Richard Stallman, Roland Pesch,
Stan Shebbs, et al, issue 9. Free Software Foundation 2008 . http://sourceware.org/
gdb/current/onlinedocs/gdb_toc.html

[4] GDB Internals: A guide to the internals of the GNU debugger, John Gillmore and Stan
Shebbs, issue 2. Cygnus Solutions 2006 . http://sourceware.org/gdb/current/on-
linedocs/gdbint_toc.html

[5] libbfd: The Binary File Descriptor Library, Steve Chamberlain, issue 1. Cygnus Solutions
2006.

[6] Debugging the OpenRISC 1000 with GDB: Target Processor Manual, Jeremy Bennett,
issue 1. Embecosm Limited June 2008 . http://www.embecosm.com/downloads/
orlk/orlk.html

[7] Doxygen: Source code documentation generator tool, Dimitri van Heesch, 2008 . http://
www.doxygen.org

[8] OpenRISC 1000 Architectural Manual, Damjan Lampret, Chen-Min Chen, Marko Mlinar,
Johan Rydberg, Matan Ziv-Av, Chris Ziomkowski, Greg McGary, Bob Gardner, Rohit
Mathur and Maria Bolado, November 2005 . http://www.opencores.org/cvsget.cgi/
orlk/docs/openrisc_arch.pdf

[9] Texinfo: The GNU Documentation Format Robert J Chassell and Richard Stallman, issue
4.12. Free Software Foundation 9 April, 2008 .

[10] OpenRISC 1000: ORPSoC Damjan Lampret et al. OpenCores http://opencores.org/
projects.cgi/web/orlk/orpsoc

[11] SoC Debug Interface Igor Mohor, issue 3.0. OpenCores 14 April, 2004 . http://
opencores.org/cvsweb.shtml/dbg interface/doc/DbgSupp.pdf

59 Copyright © 2008 Embecosm Limited

http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdbint_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdbint_toc.html
http://www.embecosm.com/downloads/or1k/or1k.html
http://www.embecosm.com/downloads/or1k/or1k.html
http://www.doxygen.org
http://www.doxygen.org
http://www.opencores.org/cvsget.cgi/or1k/docs/openrisc_arch.pdf
http://www.opencores.org/cvsget.cgi/or1k/docs/openrisc_arch.pdf
http://opencores.org/projects.cgi/web/or1k/orpsoc
http://opencores.org/projects.cgi/web/or1k/orpsoc
http://opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf
http://opencores.org/cvsweb.shtml/dbg_interface/doc/DbgSupp.pdf

ECOSM

Index
Symbols

_initialize functions, 21, 24
_initialize_arch_os_nat, 18
_initialize_arch_remote, 24
_initialize_arch_tdep, 5, 24, 30
_initialize_or1lk_tdep, 6, 6, 37, 54, 54
_initialize_remote_arch, 18, 30
_initialize_remote_orlk, 47

A

ABI, 57
and function prologue, 13
OpenRISC 1000 (see OpenRISC 1000)
accessor functions
struct gdbarch, 5
address space, 3
add_com, 55
add_info, 55
add_target, 18, 47
align_down, 14
align_up, 14
Application Binary Interface (see ABI)
arch-os-nat.c file, 18
arch-tdep.c file, 30
arch_frame_prev_register, 29
arch_frame_prev_sniffer, 29
arch_frame_sniffer, 28
arch_frame_this_id, 28
arch_gdbarch_init, 24

backtrace_command, 28
BFD, 4, 30, 57
back end, 4
OpenRISC 1000 (see OpenRISC 1000)
User Guide, 1, 59
source (see documentation)
bfd directory, 22
bfd.texinfo file, 23
bfd_arch_or32, 4, 37
Binary File Descriptor (see BFD)
binutils, 4, 22, 23
disassembly function, 9, 54
breakpoint
functions in struct gdbarch, 8, 8, 8, 9

functions in struct target_ops, 20, 20, 20

in hardware, 20, 20
for OpenRISC 1000, 49, 50, 50, 50

insertion and removal, 8
instruction
for OpenRISC 1000, 38
restriction on location, 8
size, 8
program counter adjustment after, 9
reinsertion when continuing, 29, 30, 52
restarting after, 52
problem with OpenRISC 1000, 52
break_command, 26
build_automata, 37, 54
byte order, 7

C

catch_exception, 49
class_support, 55
cli-cmds.h file, 21
cmdlist, 21, 21
COFF, 4

and OpenRISC 1000, 4
config sub-directory, 22

(see also gdb directory)
config/arch/nm-os.h file, 18
config/arch/os.mh file, 18
configure command, 22
configure.tgt

header file dependencies, 37

OpenRISC 1000 targets supported, 36
configure.tgt file, 6, 18, 30, 47

(see also GDB configuration)

gdb_sim parameter, 21

target matching, 22
continue_command, 29
convenience macros

for struct target_ops, 17
core_addr_greaterthan, 14
core_addr_lessthan, 14, 42
CPU Configuration Register (see Special
Purpose Register)
CPUCFGR (see Special Purpose Register)
current target (see target operations)
current_interp_command_loop, 24, 24, 25,
26, 26, 28, 29
current_target, 17, 47

D

DCFGR (see Debug Configuration Register)
DCR (see Debug Control Register)
ddd

60 Copyright © 2008 Embecosm Limited

ECOSM

problem with argument passing, 53
Debug Configuration Register (see Special
Purpose Register)

Debug Control Register (see Special Purpose
Register)
Debug Mode Register (see Special Purpose
Register)
Debug Reason Register (see Special Purpose
Register)
Debug Stop Register (see Special Purpose
Register)
Debug Unit, 31
availability, 48
GDB hardware breakpoint
insertion, 50
removal, 50
GDB hardware watchpoint
insertion, 50
removal, 51
restarting after, 48
JTAG interface, 32
access to General Purpose Registers, 33
access to main memory, 33
access to Special Purpose Registers, 33
CPU control, 33
direct connection (parallel port), 46
error handling, 54
Igor Mohor version, 32, 34, 59
JP1 interface limitations, 54
layered interface, 54
ORPSoC version, 32, 59
remote connection over TCP/IP (see Re-
mote JTAG Protocol)
scan chains, 32

matchpoint, 32, 50

registers (see Special Purpose Register)

watchpoint, 32, 49

watchpoint counter, 32
Debug Value Register (see Special Purpose
Register)

Debug Watchpoint Counter Register (see
Special Purpose Register)
default_memory_insert_breakpoint , 8
default_memory_remove_breakpoint , 8
default_print_registers_info , 10
default_register_reggroup_p , 10

defs.h file, 22

DejaGNU, 23

delay slot

in OpenRISC 1000, 38, 41

struct gdbarch functions to handle, 9
disassembly, 9, 23, 30

for OpenRISC 1000, 39, 54

DMR (see Debug Mode Register)
documentation, 30
building, 23
automatic, 23
HTML output format, 23
info output format, 23
PDF output format, 23
PostScript output format, 23
source, 23
BFD User Guide, 23
GDB Internals document, 23
GDB User Guide, 23, 30
OpenRISC 1000 Target GDB User
Guide, 36, 59
Doxygen, 59
use with GDB for OpenRISC 1000, 2
DRR (see Debug Reason Register)
DSR (see Debug Stop Register)
dummy frame (see stack frame)
dummy target (see target operations)
DVR (see Debug Value Register)
DWARF2, 43, 45
dwarf2_frame_sniffer, 43
DWCR (see Debug Watchpoint Counter Reg-
ister)

E

ELF, 4

and OpenRISC 1000, 4
Embecosm, 2
endianism, 57, 58
enum bfd_architecture, 4
enum command_class, 5
exec, 3

(see also program)
executable (see exec)

F

find_pc_partial_function, 42, 43
frame (see stack frame)
frame base sniffer (see struct frame_base)
frame number (see stack frame)
frame pointer, 11, 12, 57

in OpenRISC 1000, 39, 57

value in $fp (see GDB)

value in stack frame (see stack frame)
frameless function (see stack frame)
frame_base_append_sniffer, 15
frame_base_set_default, 15, 43
frame_pointer

in OpenRISC 1000, 44
frame_unwind_append_sniffer, 15, 15, 43
frame_unwind_id, 43

61 Copyright © 2008 Embecosm Limited

ECOSM

frame_unwind_register_unsigned , 42, 44

frame ID (see stack frame)

function epilogue (see OpenRISC 1000)

function prologue, 13 (see OpenRISC 1000)
cache (see prologue cache)

G

GDB
built in variables
$fp, 10, 17, 44
$pc, 31
$ps, 9, 31
configuration, 6
(see also configure.tgt file)
Internals document, 1, 1, 7, 36, 59
source (see documentation)
naming conventions, 6
new architecture description, 6
signals, 52
TAGS file, 36
target creation, 17
Ul independent output, 55, 55
User Guide, 1, 59
source (see documentation)
value types (see struct type)
GDB commands
adding new commands, 5, 21
for OpenRISC 1000, 54
awatch, 50
backtrace, 15, 28
break, 25
call, 4, 14, 43
classification, 5
continue, 29
disassemble, 23
file, 53
hbreak, 50
help, 21
help target, 18
help target, 48
help target jtag , 48
implementation functions
add_alias_cmd, 21
add_cmd, 21
add_com, 21
add_info, 21
add_prefix_cmd, 21
callback functions, 21
info, 21, 55
info sim, 21
info spr, 37, 54, 55
info target, 18, 18
info registers, 40

info target, 48, 48
internal representation, 5
next, 51
nexti, 51
print, 15
procedure flows (see procedure flows)
run, 19, 26, 51, 51, 53
rwatch, 50
set breakpoint auto-hw off , 20
spr, 37, 54, 55
step, 51
stepi, 51
target, 18, 19, 24, 25
target remote, 22
target jtag, 47, 47
target sim, 21
watch, 50
gdb directory, 22, 30, 36, 46
gdb.log file, 23
gdb.sum file, 23
gdb.texinfo file, 23, 30
gdb/orlk-jtag.c file, 53
gdb/orlk-jtag.h file, 54
gdb/testsuite sub-directory, 23
gdbarch.h file, 7
gdbarch_alloc, 7, 37
gdbarch_list_lookup_by_info, 6, 37
gdbarch_register, 6, 6, 30, 37, 37
gdbarch_register_type (see accessor func-
tions)
gdbarch_single_step_through_delay (see ac-
cessor functions)
gdbarch_skip_prologue (see accessor func-
tions)
gdbarch_unwind_pc (see accessor_functions)
gdbarch_unwind_sp (see accessor_functions)
gdbint.texinfo file, 23
gdb_byte, 11
gdb_init, 24
gdb_main, 24
General Purpose Register, 31, 57
access via JTAG interface (see Debug
Unit, JTAG interface, access to General
Purpose Registers)
generic_load, 49
generic_mourn_inferior, 53
get_func_type, 28

glibc, 23
GPRs (see General Purpose Register)
H

handle_inferior_event, 24, 27, 29
hardware breakpoint (see breakpoint)

62 Copyright © 2008 Embecosm Limited

ECOSM

hardware watchpoint (see watchpoint)
Harvard architecture, 15, 58
header dependencies, 47

(see also Makefile.in file)

I

include directory, 22, 30
inferior, 3
process ID
for OpenRISC 1000, 49
remote creation, 20, 51, 53
remote destruction (mourning), 20, 52, 53
inferior_pid, 49
info spr (see GDB commands)
infolist, 21
initialize_current_architecture, 24
init_wait_for_inferior, 53

J

jpl_ functions, 54

jpl_1l_ functions, 54
JTAG, 58 (see Debug Unit)
jtr_ functions, 54

jtr_ll_ functions, 54

K
keep_going, 30

L

libiberty, 23

floating point formats, 8
libsim.a file, 21, 30
Linux

and OpenRISC 1000, 4
linux_trad_target, 18

Makefile.in file, 47
touch command as alternative to chang-
ing , 47

matchpoint (see Debug Unit)

native debugging, 3
target creation, 17, 18
next frame (see stack frame)
Next Program Counter (see Special Purpose
Register)
nm.h file, 18
normal_stop, 24, 27, 27, 29
no_shared_libraries, 49
NPC (see Next Program Counter)
null_ptid, 49

(0]

opcodes directory, 23, 54
OpenRISC 1000
ABI 8, 41, 43
argument passing, 35
result return register, 35
stack frame alignment, 35, 42
variations from documented standard,
35, 42
additional GDB commands, 37
architecture, 31
GPRs (see General Purpose Register)
information functions, 38
main memory, 31
manual, 59
SPRs (see Special Purpose Register)
bare metal debugging, 3, 49
BFD, 37
variations from documented standard,
36
breakpoint instruction, 38
creating new struct gdbarch for, 6
creating new struct target_ops for, 47
endianism, 39
frame handling, 41
function epilogue, 41
function prologue, 41
hardware data representation, 38
hardware matchpoints and watchpoints,
50, 50
distinction from GDB watchpoint, 50
interrupt during debugging, 51
legacy GDB 5.3 port, 36
link register, 43, 45, 46, 52, 57
naming conventions, 6
red zone, 14, 42
register assignment in GDB, 10, 39, 41
register types in GDB, 40
Remote JTAG Protocol (see Remote JTAG
Protocol)
source files for GDB port, 36
supported targets in GDB, 36
tool chain, 4, 59
orlk-jtag.c, 36
orlk-jtag.c file, 46
orlk-jtag.h, 36
orlk-jtag.h file, 46
orlk-jtag.o file, 47
orlk-tdep.c, 36
orlk-tdep.c file, 47
orlk-tdep.h, 36
orlk-tdep.h file, 37

63 Copyright © 2008 Embecosm Limited

ECOSM

Orlksim, 35

bug fixes, 35

debug interface variants, 35

exit handling in GDB, 52
orlk_breakpoint_from_pc, 38
orlk_clear_breakpoint, 50
orlk_close, 49, 49
orlk create_inferior, 53
orlk_dbgcache, 47, 49
orlk _detach, 49
orlk_dump_tdep, 37, 37
orlk_fetch_registers, 49
orlk files_info, 48
orlk first_free_matchpoint, 50
OR1K_FP_REGNUM, 39
orlk frame_align, 42
orlk frame_base, 43
orlk frame_base_address, 43, 44
orlk_frame_fp_loc, 46
orlk_frame_prev_register, 44, 44
OR1K_FRAME_RED_ZONE_SIZE, 42
orlk frame_size, 46
orlk frame_size_check, 46
orlk frame_sniffer, 43, 44, 44
orlk frame_this_id, 44
orlk frame_unwind_cache, 42, 44, 44
orlk_gdbarch_init, 6, 37
orlk_get_saved_reg, 46
orlk_info_spr_command, 55
orlk_insert_breakpoint, 50, SO
orlk_insert_hw_breakpoint, 50, 50
orlk_insert_watchpoint, 50
orlk jtag functions, 54, 54
orlk jtag close, 47, 49
OR1K_JTAG_COMMAND_CHAIN, 33
OR1K_JTAG_COMMAND_READ, 33
OR1K_JTAG_COMMAND_READ_BLOCK, 33
OR1K_JTAG_COMMAND_WRITE, 33
OR1K_JTAG_COMMAND_WRITE_BLOCK ,
33
orlk jtag init, 47, 48
orlk jtag read_mem, 47, 49
orlk jtag read_spr, 47
orlk jtag stall, 47
orlk jtag target, 47
orlk jtag unstall, 47
orlk jtag wait, 47, 51
orlk jtag write_mem, 47, 49
orlk jtag write_spr, 47
orlk kill, 52
orlk link_address, 46
orlk_matchpoint_equal, 51
orlk _mourn_inferior, 53

OR1K_NUM_PSEUDO_REGS, 39
OR1K_NUM_REGS, 39
orlk_open, 48, 49
orlk_parse_params, 55, 55
OR1K_PC_REGNUM, 39
orlk_prepare_to_store, 49
orlk_pseudo_register_read, 40
orlk _pseudo_register_write, 40
orlk_push_dummy_call, 43

orlk rcmd, 53

orlk_read_spr, 55
orlk_register_info, 40
orlk_register_name, 40
orlk_register_reggroup_p, 40
orlk_register_type, 40
orlk_remove_breakpoint, 50, 50
orlk_remove_hw_breakpoint, 50, 50
orlk_remove_watchpoint, 51
orlk resume, 49, 51

orlk return_value, 38
orlk_set_breakpoint, 50
orlk_single_step_through_delay , 38
orlk skip_prologue, 42, 46
orlk_spr_command, 55
OR1K_SP_REGNUM, 39
OR1K_SR_REGNUM, 39
OR1K_STACK_ALIGN, 42
orlk_start _remote, 49
orlk_stop, 52
orlk_stopped_by_watchpoint, 51
orlk_stopped_data_address, 51
orlk_stopped_watchpoint_info , 51
orlk_store_registers, 49
orlk_target, 47
orlk_unwind_dummy_id, 43
orlk_unwind_pc, 42
orlk_unwind_sp, 42

orlk wait, 51
orlk_watchpoint_gc, 51
orlk_write_spr, 55, 55
orlk_xfer_partial, 49

or32-dis.c file, 54

or32-opc.c file, 54

P

parse_breakpoint_sals, 26

POSIX, 23

PPC (see Previous Program Counter)
previous frame (see stack frame)

Previous Program Counter (see Special Pur-
pose Register)

print_frame, 28

print_frame_args, 28

64 Copyright © 2008 Embecosm Limited

ECOSM

print_frame_info, 28
print_insn_big or32, 39, 54
print_insn_little_or32, 39, 54
print_stack_frame, 28
procedure flows, 23

initial start up, 24

target command, 24
proceed, 27, 29
process and thread ID

for OpenRISC 1000, 49

null value, 49
program, 3

(see also exec)
program counter

as Special Purpose Register, 31

functions in struct gdbarch, 9, 14

in OpenRISC 1000, 39

value in stack frame, 16, 28
program_counter

value in stack frame

for OpenRISC 1000, 42, 45

prologue cache, 13

and stack frame sniffer, 14

memory management, 16

for OpenRISC 1000, 44

invalidating, 51
pseudo-register, 4, 9

R

readspr, 53
read_pc_pid, 25
read_var_value, 29
red zone (see stack frame)
regcache_cooked_read, 11
regcache_cooked_read_signed, 11
regcache_cooked_read_unsigned , 11
regcache_cooked_write, 11
regcache_cooked_write_signed , 11
regcache_cooked_write_unsigned , 11, 43
register

architecture for OpenRISC 1000, 39

availability in OpenRISC 1000 target, 48

cache, 10

invalidating, 51
synchronization with target, 19

cache access functions, 11, 11

cooked, 9, 11

fields in struct gdbarch, 9, 9

floating point, 10

functions for OpenRISC 1000, 42, 45, 49,

49, 49

functions in struct gdbarch, 9, 9, 10, 10,

10, 10, 10, 14

functions in struct target_ops, 19, 19
pseudo- (see pseudo-register)
raw, 9, 11
simulator functions, 21
vector, 10
registers_changed, 51
remote debugging, 3
remote command execution, 19
Remote Serial Protocol (see Remote Serial
Protocol)
remote terminal access, 19
target creation, 17, 18
remote inferior (see inferior)
Remote JTAG Protocol, 5, 46
commands
block read registers, 33
block write registers, 33
read register, 33
setting scan chain, 33
write register, 33
execution status, 48, 49
implementation over TCP/IP, 33
interface functions, 46, 47
packet format, 33
reattaching to target, 49
replacement by Remote Serial Protocol, 33
resetting the target, 47, 48
server side, 34
Remote Serial Protocol, 17, 18, 22, 30, 59
server side implementation, 22
remote-orlk.c, 36
remote-orlk.c file, 46
remote-orlk.o file, 47
remote-sim.a file, 21
remote-sim.h file, 22, 30
remote.c file, 18
remove_breakpoints, 27
run_command, 26

sentinel frame (see stack frame)
sim directory, 23
simulator library, 21
creation, 30
directory for code, 23
functions
sim_close, 21
sim_create_inferior, 21
sim_do_command, 22
sim_fetch_register, 21
sim_info, 21
sim_load, 21
sim_open, 21

65 Copyright © 2008 Embecosm Limited

ECOSM

sim_read, 21
sim_resume, 21
sim_stop, 21
sim_stop_reason, 22
sim_store_register, 21
sim_write, 21
sim_close (see simulator library)
sim_create_inferior (see simulator library)
sim_do_command (see simulator library)
sim_fetch_register (see simulator library)
sim_info (see simulator library)
sim_load (see simulator library)
sim_open (see simulator library)
sim_read (see simulator library)
sim_resume (see simulator library)
sim_stop (see simulator library)
sim_stop_reason (see simulator library)
sim_store_register (see simulator library)
sim_write (see simulator library)
single step execution, 51, 52, 52
in hardware
for OpenRISC 1000, 49
skip_prologue_using sal, 42, 45
sniffer (see stack frame)
Special Purpose Register, 31, 58
access via JTAG interface (see Debug
Unit, JTAG interface, access to Special
Purpose Registers)
configuration registers
CPU Configuration Register , 31, 48
Debug Configuration Register , 31
Unit Present Register , 31, 48
Debug Unit
Debug Control Register, 50
Debug Control Registers , 31
Debug Mode Register, 50, 51, 51, 51,
51
Debug Mode Registers , 32
Debug Reason Register , 32, 51, 52
debug register cache, 47, 49
Debug Stop Register , 32, 52
Debug Value Register, 50
Debug Value Registers , 31
Debug Watchpoint Counter Registers ,
32
examining in GDB, 55
program counters
Next Program Counter, 31, 52
Previous Program Counter, 31, 52
setting in GDB, 55
Supervision Register, 31, 39
spr (see GDB commands)
SPRs (see Special Purpose Register)

SR (see Supervision Register)
stack frame, 11, 58

alignment, 14
for OpenRISC 1000, 35, 42, 43
analysis, 14
backtrace, 28
base address, 17
for OpenRISC 1000, 43
dummy, 15
for OpenRISC 1000, 43
functions in struct gdbarch, 15, 15, 15
example, 11
falling, 14
OpenRISC 1000 as example, 42
fields in struct gdbarch, 14
frame #-1 (see stack frame)
frame ID, 44
(see also struct frame_id)
frame number, 12
frame pointer value in
for OpenRISC 1000, 46
frameless function
for OpenRISC 1000, 42, 45
functions for OpenRISC 1000, 42, 42, 43
functions in struct gdbarch, 14, 14, 14,
14, 14, 15, 15, 15
red zone, 12, 14
return address
for OpenRISC 1000, 46
rising, 14, 42
sentinel frame, 13
sniffer, 13, 15, 28, 29
and prologue cache (see prologue cache)
for OpenRISC 1000, 43
functions, 15, 15, 15
stack pointer value in, 16, 28
for OpenRISC 1000, 42, 45
terminology, 12
frame base, 13
inner frame (see next frame)
innermost frame, 13
newer frame (see next frame)
next frame, 13
older frame (see previous frame)
outer frame (see previous frame)
previous frame, 13
this frame, 13
unwinder, 13, 14
for OpenRISC 1000, 42, 42, 43

stack pointer, 11, 12, 58

functions in struct gdbarch, 14
in OpenRISC 1000, 39, 57
value in stack frame (see stack frame)

66 Copyright © 2008 Embecosm Limited

ECOSM

start_remote, 24, 49
status register (see GDB)
strata (see target strata)
struct frame_unwind, 16

ps_regnum, 9, 39
ptr_bit, 8, 38
short_bit, 38
sp_regnum, 9, 39

fields values for OpenRISC 1000, 38
type, 16 fields and functions
unwind_data, 16 short_bit, 8

functions functions
dealloc_cache, 16 adjust_breakpoint_address , 8, 52
prev_pc, 16 breakpoint_from_pc, 8, 38
prev_register, 16 decr_pc_after_break, 9
sniffer, 16 frame_align, 14, 42
this_id, 16 frame_num_args, 14

struct cmd_list_element, 21 implementations for OpenRISC 1000,
struct frame_base, 16 38

fields inner_than, 14, 42
unwind, 16 memory_insert_breakpoint, 8

for OpenRISC 1000, 43, 44 memory_remove_breakpoint, 8

functions print_float_info, 10
this_args, 17, 44 print_insn, 9, 39
this_base, 17, 44 print_registers_info, 10
this_locals, 17, 44 print_vector_info, 10

struct frame_id, 44 pseudo_register_read, 9, 40
struct frame_info, 12 pseudo_register_write, 9, 40
struct frame_unwind push_dummy_call, 15, 43

for OpenRISC 1000, 44 push_dummy_code, 15

functions read_pc, 9, 9
this_id, 28 register_info, 40

struct gdbarch, 4 register_name, 10, 40

architecture lookup, 7 register_reggroup_p, 10, 40
(see also gdbarch_list_lookup_by_info) register_type, 10, 10, 25, 40

creating new instance, 6, 7, 30 return_value, 8, 38
for OpenRISC 1000, 37 single_step_through delay , 9, 27, 30,

data representation, 4, 8 38

default values, 4 skip_prologue, 14, 26, 42, 46

fields unwind_dummy_id, 15, 43
addr_bit, 8, 38 unwind_pc, 14, 25, 29, 42
char_signed, 8, 38 unwind_sp, 14, 29, 42
deprecated_fp_regnum, 39, 44 write_pc, 9, 9
double_bit, 8, 38 reference to BFD, 4, 6
double_format, 8, 38 register handling, 4
float_bit, 8, 38 set_gdbarch functions, 4, 4, 37
float_format, 8, 38 stack frame handling, 4
fpO_regnum, 9 struct gdbarch_info, 6
frame_red_zone_size, 14, 42 byte order, 7
int_bit, 8, 38 fields in the structure, 7
long bit, 8, 38 for OpenRISC 1000, 37

long double_bit, 8, 38
long double_format, 8, 38

struct gdbarch_tdep, 8
for OpenRISC 1000, 37, 40

long long bit, 8, 38 struct target_ops, 5, 17
num_pseudo_regs, 9, 39 breakpoint handling, 5

num_regs, 9, 39 convenience macros (see convenience
pc_regnum, 9, 9, 39 macros)

67 Copyright © 2008 Embecosm Limited

ECOSM

creation, 17, 18
for OpenRISC 1000, 47

creation>, 30

default values, 5

fields
to_doc, 18, 48
to_has_all_memory, 18, 48
to_has_execution, 19, 48, 49
to_has_memory, 18, 48
to_has_registers, 18, 48
to_has_stack, 18, 48
to_longname, 18, 48
to_shortname, 18, 47
to_stratum, 18, 48

functions
to_attach, 19
to_can_use_hw_breakpoint, 20
to_close, 19
to_create_inferior, 20, 26, 51, 53
to_detach, 19, 19
to_disconnect, 19
to_fetch_registers, 19, 25, 49
to_files_info, 18, 18, 48
to_find_description, 26
to_insert_breakpoint, 20, 27, 30, 50, 50
to_insert_hw_breakpoint, 20
to_insert_watchpoint, 20, 50
to_kill, 20, 52
to_load, 19, 25, 49
to_mourn_inferior, 20, 53
to_open, 18, 19, 24, 48
to_prepare_to_store, 19, 49
to_print_insn, 54
to_rcmd, 19, 53, 53
to_remove_breakpoint, 20, 28, 50, 50
to_remove_hw_breakpoint, 20
to_remove_watchpoint, 20, 51
to_resume, 9, 20, 27, 29, 51, 51
to_stop, 20, 52
to_stopped_by_watchpoint, 20, 25, 27,
30
to_stopped_data_address, 20
to_store_registers, 19, 49
to_terminal_inferior, 19
to_wait, 9, 20, 24, 27, 29, 51, 51
to_xclose, 19
to_xfer_partial, 19, 25, 49

memory management, 19

opening and closing a connection, 5

register access, 5

starting and stopping programs, 5

state information, 5

to_have_continuable_watchpoint , 48

to_have_steppable_watchpoint , 48
to_insert_hw_breakpoint , 50, 50
to_remove_hw_breakpoint , 50, 50
to_stopped_by_watchpoint , 51
to_stopped_data_address , 51
struct trad_frame_cache , 13, 44
choice of register data function, 45
meaning of cached data fields, 45
struct type
built in types
builtin_type_int32, 10
builtin_type_void, 10
Supervision Register (see Special Purpose
Register)
symbol side, 3, 4
symbol-and-line (SAL) information, 26, 42,
45

T

TAGS file (see GDB)
target operations, 17

(see also struct target_ops)

current target, 17

dummy target, 17

for OpenRISC 1000, 46

macros (see convenience macros)
target side, 3, 4
target strata, 17, 18
target.h, 17
target.h file, 17
TARGET_CHAR_BIT, 8
target_create_inferior (see convenience
macros)
target_fetch_registers (see convenience
macros)
target_find_description (see convenience
macros)
target_has_execution (see convenience
macros)
target_insert_breakpoint (see convenience
macros)
target_load (see convenience macros)
target_open (see convenience macros)
target_preopen, 48
target_remove_breakpoint (see convenience
macros)
target_resume (see convenience macros)
TARGET_SIGNAL_TRAP, 52
target_stopped_by_watchpoint (see conve-
nience macros)
target_strata, 47

for OpenRISC 1000, 48
target_wait (see convenience macros)

Copyright © 2008 Embecosm Limited

ECOSM

TARGET_WAITKIND_EXITED, 52
TARGET _WAITKIND_STOPPED, 52
target_xfer_partial (see convenience macros)
testing, 30

running tests, 23

test results, 23
this frame (see stack frame)
thread, 3
touch command

instead of changing Makefile.in , 47
trad_frame_cache_zalloc, 45
trad_frame_get_id, 44
trad_frame_get_register, 45
trad_frame_set_reg_addr , 45
trad_frame_set_reg realreg , 45
trad_frame_set_reg value , 45
trad_frame_set_this_base, 45

U

ui_out_field_fmt, 55, 55

Unit Present Register (see Special Purpose
Register)

unpush_target, 48

unwinder (see stack frame)

UPR (see Unit Present Register)

user interface, 3

W

wait_for_inferior, 24, 27, 29
watchpoint
functions in struct target_ops, 20, 20, 20,
20
in hardware, 20
for OpenRISC 1000, 49, 50, 50
in OpenRISC 1000 (see Debug Unit)
reinsertion when continuing, 30, 52
restarting after, 52
problem with OpenRISC 1000, 52
watchpoints_triggered, 25, 27
writespr, 53
write_pc, 52

69 Copyright © 2008 Embecosm Limited

	Howto: Porting the GNU Debugger
	Table of Contents
	Chapter 1. Introduction
	1.1. Rationale
	1.2. Target Audience
	1.3. Further Sources of Information
	1.3.1. Written Documentation
	1.3.2. Other Information Channels

	1.4. About Embecosm

	Chapter 2. Overview of GDB Internals
	2.1. GDB Nomenclature
	2.2. Main Functional Areas and Data Structures
	2.2.1. Binary File Description (BFD)
	2.2.2. Architecture Description
	2.2.3. Target Operations
	2.2.4. Adding Commands to GDB

	2.3. GDB Architecture Specification
	2.3.1. Looking up an Existing Architecture
	2.3.1.1. struct gdbarch_info

	2.3.2. Creating a New Architecture
	2.3.2.1. struct gdbarch_tdep

	2.3.3. Specifying the Hardware Data Representation
	2.3.4. Specifying the Hardware Architecture and ABI
	2.3.5. Specifying the Register Architecture
	2.3.5.1. struct gdbarch Functions Specifying the Register Architecture
	2.3.5.2. struct gdbarch Functions Giving Register Information
	2.3.5.3. Register Caching

	2.3.6. Specifying Frame Handling
	2.3.6.1. Frame Handling Terminology
	2.3.6.2. Prologue Caches
	2.3.6.3. struct gdbarch Functions to Analyze Frames
	2.3.6.4. struct gdbarch Functions to Access Frame Data
	2.3.6.5. struct gdbarch Functions Creating Dummy Frames
	2.3.6.6. Analyzing Stacks: Frame Sniffers

	2.4. Target Operations
	2.4.1. Target Strata
	2.4.2. Specifying a New Target
	2.4.2.1. Native Targets
	2.4.2.2. Remote Targets

	2.4.3. struct target_ops Functions and Variables Providing Information
	2.4.4. struct target_ops Functions Controlling the Target Connection
	2.4.5. struct target_ops Functions to Access Memory and Registers
	2.4.6. struct target_ops Functions to Handle Breakpoints and Watchpoints
	2.4.7. struct target_ops Functions to Control Execution

	2.5. Adding Commands to GDB
	2.6. Simulators
	2.7. Remote Serial Protocol (RSP)
	2.7.1. RSP Client Implementation
	2.7.2. RSP Server Implementation

	2.8. GDB File Organization
	2.9. Testing GDB
	2.10. Documentation
	2.11. Example Procedure Flows in GDB
	2.11.1. Initial Start Up
	2.11.2. The GDB target Command
	2.11.3. The GDB load Command
	2.11.4. The GDB break Command
	2.11.5. The GDB run Command
	2.11.6. The GDB backtrace Command
	2.11.7. The GDB continue Command after a Breakpoint

	2.12. Summary: Steps to Port a New Architecture to GDB

	Chapter 3. The OpenRISC 1000 Architecture
	3.1. The OpenRISC 1000 JTAG Interface
	3.2. The OpenRISC 1000 Remote JTAG Protocol
	3.3. Application Binary Interface (ABI)
	3.4. Or1ksim: the OpenRISC 1000 Architectural Simulator

	Chapter 4. Porting the OpenRISC 1000 Architecture
	4.1. BFD Specification
	4.2. OpenRISC 1000 Architecture Specification
	4.2.1. Creating struct gdbarch
	4.2.2. OpenRISC 1000 Hardware Data Representation
	4.2.3. Information Functions for the OpenRISC 1000 Architecture
	4.2.4. OpenRISC 1000 Register Architecture
	4.2.5. OpenRISC 1000 Frame Handling
	4.2.5.1. OpenRISC 1000 Functions Analyzing Frames
	4.2.5.2. OpenRISC 1000 Functions for Accessing Frame Data
	4.2.5.3. OpenRISC 1000 Functions to Create Dummy Stack Frames
	4.2.5.4. OpenRISC 1000 Frame Sniffers
	4.2.5.5. OpenRISC 1000 Frame Base Sniffer
	4.2.5.6. OpenRISC 1000 Low Level Frame Sniffers

	4.3. OpenRISC 1000 JTAG Remote Target Specification
	4.3.1. Creating struct target_ops for OpenRISC 1000
	4.3.2. OpenRISC 1000 Target Functions and Variables Providing Information
	4.3.3. OpenRISC 1000 Target Functions Controlling the Connection
	4.3.4. OpenRISC 1000 Target Functions to Access Memory and Registers
	4.3.5. OpenRISC 1000 Target Functions to Handle Breakpoints and Watchpoints
	4.3.6. OpenRISC 1000 Target Functions to Control Execution
	4.3.7. OpenRISC 1000 Target Functions to Execute Commands
	4.3.8. The Low Level JTAG Interface

	4.4. The OpenRISC 1000 Disassembler
	4.5. OpenRISC 1000 Specific Commands for GDB
	4.5.1. The info spr Command
	4.5.2. The spr Command

	Chapter 5. Summary
	Glossary
	References
	Index

